[1] TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification [C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2014: 1701-1708. [2] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering [C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2015: 815-823. [3] OUYANG W, LOY C C, TANG X, et al. DeepID-Net: deformable deep convolutional neural networks for object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 46(5): 2403-2412. [4] 刘胜宇. 网络新闻图像中人脸标注技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 33-40. (LIU S Y. Research on annotation technology of face images in network news [D]. Harbin: Harbin Institute of Technology, 2011: 33-40.) [5] FREY B J, DUECK D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814): 972. [6] LUO J, ORABONA F. Learning from candidate labeling sets [C]//NIPS 2010: Proceedings of the 23rd International Conference on Neural Information Processing Systems. New York: Curran Associates, 2010: 1504-1512. [7] ZHANG M L, YU F. Solving the partial label learning problem: an instance-based approach [C]//Proceedings of the 2015 International Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2015: 4048-4054. [8] WANG D, HOI S C H, HE Y. A unified learning framework for auto face annotation by mining Web facial images [C]//Proceedings of the 2012 ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 1392-1401. [9] WANG D, HOI S C H, HE Y, et al. Retrieval-based face annotation by weak label regularized local coordinate coding [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 550-63. [10] WANG D, HOI S C H, HE Y, et al. Mining weakly labeled Web facial images for search-based face annotation [J]. IEEE Transactions on Knowledge & Data Engineering, 2012, 26(1): 166-179. [11] CHEN Z, FENG B, NGO C W, et al. Improving automatic name-face association using celebrity images on the Web [C]//Proceedings of the 2015 International Conference on Multimedia Retrieval. New York: ACM, 2015: 623-626. [12] GUILLAUMIN M, VERBEEK J, SCHMID C. Multiple instance metric learning from automatically labeled bags of faces [C]//Proceedings of the 2010 European Conference on Computer Vision. Berlin: Springer, 2010: 634-647. [13] XIAO S, TAN M, XU D. Weighted block-sparse low rank representation for face clustering in videos[C]//Proceedings of the 2014 European Conference on Computer Vision. Berlin: Springer, 2014: 123-138. [14] XIAO S, XU D, WU J. Automatic face naming by learning discriminative affinity matrices from weakly labeled images [J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(10): 2440-2452. [15] MATHIALAGAN C S, GALLAGHER A C, BATRA D. VIP: finding important people in images [C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2015: 4858-4866. [16] BERG T L, BERG A C, EDWARDS J, et al. Names and faces in the news [C]//CVPR 2004: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2004: 848-854. [17] GUILLAUMIN M, MENSINK T, VERBEEK J, et al. Face recognition from caption-based supervision[J]. International Journal of Computer Vision, 2012, 96(1): 64. [18] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. [19] PANG L, NGO C W. Unsupervised celebrity face naming in Web videos [J]. IEEE Transactions on Multimedia, 2015, 17(6): 854-866. [20] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters [J]. Journal of the Society for Industrial & Applied Mathematics, 2006, 11(2): 431-441. |