Journal of Computer Applications ›› 2018, Vol. 38 ›› Issue (2): 602-609.DOI: 10.11772/j.issn.1001-9081.2017061516

Previous Articles     Next Articles

Diagnosis of fault circuit by modularized BP neural network based on fault propagation

HE Chun, LI Qi, WU Ranghao, LIU Bangxin   

  1. College of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610054, China
  • Received:2017-06-20 Revised:2017-08-14 Online:2018-02-10 Published:2018-02-10

基于故障传播的模块化BP神经网络电路故障诊断

何春, 李琦, 吴让好, 刘邦欣   

  1. 电子科技大学 通信与信息工程学院, 成都 610054
  • 通讯作者: 李琦
  • 作者简介:何春(1972-),女,四川成都人,副研究员,硕士,主要研究方向:通信信号处理、电子系统的可靠性;李琦(1993-),男,山东滨州人,硕士研究生,主要研究方向:电子系统的可靠性;吴让好(1993-),男,湖北荆州人,硕士,主要研究方向:电子系统的可靠性;刘邦欣(1993-),男,江西赣州人,硕士研究生,主要研究方向:电子系统的可靠性。

Abstract: It is difficult to diagnose the faults of large-scale digital-analog hybrid circuit because it has numerous fault modes, the circuit failure status is complex and can be propagated easily. To solve these problems, a new failure diagnosis method, namely Modularized Back Propagation (BP) neural network based on Fault Propagation (MBPFP), was proposed. Firstly, fault propagation between subcircuits was analyzed on the basis of circuit module division, and failure source and transmission source were modularized. Secondly, the set of fault causes was narrowed and the fault module was determined by the anomaly detection model of subcircuit in 1-order positioning. Finally, the fault location was realized and the fault mode was identified by the BP neural network of target module in 2-order positioning. The experimental results show that compared with the traditional BP neural network method, the proposed MBPFP method has a high fault coverage and the accuracy is improved by at least 8 percentage points, which is outperforms the traditional method based on BP neural network.

Key words: large-scale digital-analog hybrid circuit, fault diagnosis, fault propagation, Back Propagation (BP) neural network, anomaly detection model

摘要: 大规模的数模混合电路所含故障模式众多,电路故障状态复杂,且易发生传播,因而电路故障诊断难度较大。针对大规模电路发生故障时存在故障传播的问题,提出一种基于故障传播的模块化BP神经网络(MBPFP)故障诊断方法。首先,在电路模块划分的基础上分析子电路间的故障传播,并将故障源和故障传播源"模块化";然后,通过子电路的异常检测模型进行一级定位,缩小故障原因集合,确定故障模块;最后,利用目标模块的BP神经网络模型进行二级定位,实现故障诊断并识别故障模式。与传统BP神经网络等方法进行比较的实验结果表明,MBPFP故障诊断方法具有较高的故障覆盖率,在定位准确率方面提高了至少8个百分点,其性能优于传统BP神经网络等方法。

关键词: 大规模数模混合电路, 故障诊断, 故障传播, BP神经网络, 异常检测模型

CLC Number: