[1] CANCER TODAY.[EB/OL].[2018-05-10]. http://gco.iarc.fr/today/explore. [2] 陈万青, 孙可欣, 郑荣寿, 等. 2014年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2018, 27(1):1-14. (CHEN W Q, SUN K X, ZHENG R S, et al. Report of cancer incidence and mortality in different areas of China, 2014[J]. China Cancer, 2018, 27(1):1-14.) [3] 刘一鸣, 张鹏程, 刘祎, 等.基于全卷积网络和条件随机场的宫颈癌细胞学图像的细胞核分割[J]. 计算机应用, 2018, 38(11):3348-3354. (LIU Y M, ZHANG P C, LIU Y, et al. Segmentation of cervical nuclei based on fully convolutional network and conditional random field[J]. Journal of Computer Applications, 2018, 38(11):3348-3354.) [4] 张鑫. 一种基于图像内容的粗略分类方法研究[D]. 南昌:南昌航空大学, 2015:44-48. (ZHANG X. A method of research of general classification methods on image[D]. Nanchang:Nanchang Hangkong University, 2015:44-48.) [5] GENTAV A, AKSOY S, ÖNDER S. Unsupervised segmentation and classification of cervical cell images[J]. Pattern Recognition, 2012, 45(12):4151-4168. [6] 鲁武警. 基于Snake分割和SVM的宫颈细胞识别研究[D]. 济南:山东大学, 2015:45-52. (LU W J. Study of cervical cell recognition based on Snake segmentation and SVM[D]. Jinan:Shandong University, 2015:45-52.) [7] CHEN Y F, HUANG P C, LIN K C, et al. Semi-automatic segmentation and classification of Pap smear cells[J]. IEEE Journal of Biomedical & Health Informatics, 2014, 18(1):94-108. [8] 赵理莉, 孙燎原, 殷建平, 等. 结合层次法与主成分分析特征变换的宫颈细胞识别[J]. 国防科技大学学报, 2017, 39(6):45-50. (ZHAO L L, SUN L Y, YIN J P, et al. Cervical cell recognition based on hierarchical method and principal component analysis feature transformation[J]. Journal of National University of Defense Technology, 2017, 39(6):45-50.) [9] 吕绪洋. 宫颈细胞病理图像的分类识别方法研究[D]. 桂林:广西师范学院, 2016:22-33. (LYU X Y. The classification of cervical cell pathological image recognition method research[D]. Guilin:Guangxi Teachers Education University, 2016:22-33.) [10] 王爽. 宫颈细胞图像分割与识别算法研究[D]. 青岛:山东科技大学, 2017:40-47. (WANG S. Study on recognition and segmentation technology of cervical cell image[D]. Qingdao:Shandong University of Science and Technology, 2017:40-47.) [11] 关涛. 光学显微宫颈细胞图像的分割与识别方法研究[D]. 长沙:国防科学技术大学, 2015:103-116. (GUAN T. Segmentation and classification of optical microscopic cervical cell images[D]. Changsha:National University of Defense Technology, 2015:103-116.) [12] CHANKONG T, THEERA-UMPON N, AUEPHANWIRIYAKUL S. Automatic cervical cell segmentation and classification in Pap smears[J]. Computer Methods and Programs in Biomedicine, 2014, 113(2):539-556. [13] 李文杰. 一种多分类器融合的单个宫颈细胞图像分割、特征提取和分类识别方法研究[D]. 桂林:广西师范大学, 2016:47-58. (LI W J. Based on multiple fusion of single cervical cell image segmentation, feature extraction and classification recognition method research[D]. Guilin:Guangxi Normal University, 2016:47-58.) [14] LING Z, HUI K, CHIEN T C, et al. Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining[J]. Cytometry Part A, 2014, 85(3):214-230. [15] JIE S, XUAN X, HE Y, et al. Automatic detection of cervical cancer cells by a two-level cascade classification system[J]. Analytical Cellular Pathology, 2016, 2016(4):9535027. [16] ZHAO L, LI K, YIN J, et al. Complete three-phase detection framework for identifying abnormal cervical cells[J]. IET Image Processing, 2017, 11(4):258-265. [17] SARWAR A, SHARMA V, GUPTA R. Hybrid ensemble learning technique for screening of cervical cancer using Papanicolaou smear image analysis[J]. Personalized Medicine Universe, 2015, 4:54-62. [18] 刘艳红, 罗晓曙, 陈锦, 等. 宫颈细胞图像的特征提取与识别研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2):61-66. (LIU Y H, LUO X S, CHEN J, et al. Research on cervical cell image feature extraction an recognition[J]. Journal of Guangxi Normal University (Natural Science Edition), 2016, 34(2):61-66.) [19] ZHANG L, LU L, NOGUES I, et al. DeepPap:deep convolutional networks for cervical cell classification[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(6):1633-1643. [20] 卢磊, 罗晓曙, 孙妤喆, 等. 基于联合特征PCANet的宫颈细胞图像识别方法:CN106778554A[P]. 2017-05-31. (LU L, LUO X S, SUN Y Z, et al. Research of cervical cell image classification based on feature-united PCANet:CN106778554A[P]. 2017-05-31.) [21] 郝占龙, 罗晓曙, 赵书林.基于同层多尺度核CNN的单细胞图像分类[J]. 计算机工程与应用, 2018, 54(15):181-184. (HAO Z L, LUO X S, ZHAO S L. Single cell image classification based on same layer multi scale kernel CNN[J]. Computer Engineering and Applications, 2018, 54(15):181-184.) [22] ZHAO M, WU A, SONG J, et al. Automatic screening of cervical cells using block image processing[EB/OL].[2018-05-10]. https://doi.org/10.1186/s12938-016-0131-z. [23] UIJLINGS J R, SANDE K E, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [24] 彭振武.宫颈细胞学看细胞到底要看什么?[EB/OL].[2018-06-13]. https://www.91360.com/201701/60/31313.html. (PENG Z W. What can be seen in the cell according to cervical cytology?[EB/OL].[2018-06-13]. https://www.91360.com/201701/60/31313.html.) [25] HECHT-NIELSEN R. Theory of the backpropagation neural network[C]//IJCNN 1989:Proceedings of the 1989 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 1989:593-605. |