[1] HSIEH S Y, CHOU Y C. A faster cDNA microarray gene expression data classifier for diagnosing diseases[J]. IEEE//ACM Transactions on Computational Biology & Bioinformatics, 2016, 13(1):43-54. [2] BUTT H Z, SYLVIUS N, SALEM M K, et al. Microarray-based gene expression profiling of abdominal aortic aneurysm[J]. European Journal of Vascular and Endovascular Surgery, 2016, 52(1):47-55. [3] 徐久成,李涛,孙林,等.基于信噪比与邻域粗糙集的特征基因选择方法[J].数据采集与处理,2015,30(5):973-981. (XU J C, LI T, SUN L, et al. Feature gene selection based on SNR and neighborhood rough set[J]. Journal of Data Acquisition and Processing, 2015, 30(5):973-981.) [4] ZHAO Z, WANG L, LIU H. Efficient spectral feature selection with minimum redundancy[C]//Proceedings of the 2010 Twenty-Fourth AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2010:673-678. [5] 李晓波,彭司华.多类别肿瘤分类的特恒基因选择方法研究[J].复旦学报,2014,53(3):305-312. (LI X B, PENG S H. Informative gene selection methods for multi-category cancer classification[J]. Journal of Fudan University (Natural Science), 2014, 53(3):305-312.) [6] 徐久成,冯森,穆辉宇.基于信噪比与随机森林的肿瘤特征基因选择[J].河南师范大学学报(自然科学版),2017,45(2):87-92. (XU J C, FENG S, MU H Y. Tumor feature gene selection based on SNR and random forest[J]. Journal of Henan Normal University (Natural Science Edition), 2017, 45(2):87-92.) [7] YU B, LI S, LIU H J. A hybrid gene selection method for tumor classification based on genetic algorithm and support vector machine[J]. Journal of Computational and Theoretical Nanoscience, 2015, 12(11):4730-4735. [8] HU Q H, AN S, YU D R. Soft fuzzy rough sets for robust feature evaluation and selection[J]. Information Sciences, 2010, 180(22):4384-4400. [9] CHEN D G, ZHAO S Y. Local reduction of decision system with fuzzy rough sets[J]. Fuzzy Sets and Systems, 2010, 161(13):1871-1883. [10] 陈涛,洪增林,邓方安.基于优化的邻域粗糙集的混合基因选择算法[J].计算机科学,2014,41(10):291-294. (CHEN T, HONG Z L, DENG F A. Hybrid gene selection algorithm based on optimized neighborhood rough set[J]. Computer Science, 2014, 41(10):291-294.) [11] LI X, PENG S, CHEN J, et al. SVM-T-RFE:a novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles[J]. Biochemical and Biophysical Research Communications, 2012, 419(2):148-153. [12] MAULIK U, MUKHOPADHYAY A, CHAKRABORTY D. Gene-expression-based cancer subtypes prediction through feature selection and transductive SVM[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(4):1111-1117. [13] 谢志伟,王志明,骆剑锋.基于RD-SVM的肿瘤信息基因选择算法[J].计算机应用与软件,2015,32(5):310-313. (XIE Z W, WANG Z M, LUO J F. Tumor informative gene selection algorithm based on RD-SVM[J]. Computer Applications and Software, 2015, 32(5):310-313.) [14] KANEHISA M, GOTO S, SATO Y, et al. Data, information, knowledge and principle:back to metabolism in KEGG[J]. Nucleic Acids Research, 2014, 42:D199-D205. [15] 杨淑莹.群体智能与仿生计算[M].北京:电子工业出版社,2016:109-124. (YANG S Y. Swarm Intelligence and Bionic Computation[M]. Beijing:Publishing House of Electronics Industry, 2016:109-124.) [16] ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2009, 39(6):1362-1381. [17] 陈伟,周頔,孙俊,等.一种采用完全学习策略的量子行为粒子群优化算法[J].控制与决策,2012,27(5):719-730. (CHEN W, ZHOU D, SUN J, et al. Improved quantum-behaved particle swarm optimization algorithm based on comprehensive learning strategy[J]. Control and Decision, 2012, 27(5):719-730.) [18] CHUANG L Y, YANG C H, LI J C, et al. A hybrid BPSO-CGA approach for gene selection and classification of microarray data[J]. Journal of Computional Biology, 2012, 19(1):68-82. [19] XU J C,XU T H,SUN L,et al. An efficient gene selection technique based on fuzzy C-means and neighborhood rough set[J]. Applied Mathematics & Information Sciences, 2014, 8(6):3101-3110. [20] 徐天贺,马媛媛,徐久成.一种基于邻域互信息最大化和粒子群优化的特征基因选择方法[J].小型微型计算机系统,2016,37(8):1775-1779. (XU T H, MA Y Y, XU J C. Efficient gene selection technique based on maximum neighborhood mutual information and particle swarm optimization[J]. Journal of Chinese Computer Systems, 2016, 37(8):1775-1779.) |