Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (2): 348-353.DOI: 10.11772/j.issn.1001-9081.2018061344

Previous Articles     Next Articles

Continuous action segmentation and recognition based on sliding window and dynamic programming

YANG Shiqiang, LUO Xiaoyu, QIAO Dan, LIU Peilei, LI Dexin   

  1. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an Shaanxi 710048, China
  • Received:2018-06-27 Revised:2018-08-23 Online:2019-02-10 Published:2019-02-15
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (54175365).

基于滑动窗口和动态规划的连续动作分割与识别

杨世强, 罗晓宇, 乔丹, 柳培蕾, 李德信   

  1. 西安理工大学 机械与精密仪器工程学院, 西安 710048
  • 通讯作者: 罗晓宇
  • 作者简介:杨世强(1973-),男,甘肃白银人,副教授,博士,主要研究方向:智能机器人控制、行为检测与识别;罗晓宇(1990-),男,山西朔州人,硕士研究生,主要研究方向:行为检测与识别;乔丹(1994-),男,河北邯郸人,硕士研究生,主要研究方向:图像检测、动作识别;柳培蕾(1993-),男,陕西宝鸡人,硕士研究生,主要研究方向:机电系统动力学分析;李德信(1965-),男,山东烟台人,副教授,博士,主要研究方向:机械计算机辅助设计/计算机辅助制造、机械动力学。
  • 基金资助:
    国家自然科学基金资助项目(54175365)。

Abstract: Concerning the fact that there are few researches on continuous action recognition in the field of action recognition and single algorithms have poor effect on continuous action recognition, a segmentation and recognition method of continuous actions was proposed based on single motion modeling by combining sliding window method and dynamic programming method. Firstly, the single action model was constructed based on the Deep Belief Network and Hidden Markov Model (DBN-HMM). Secondly, the logarithmic likelihood value of the trained action model and the sliding window method were used to estimate the score of the continous action, detecting the initial segmentation points. Thirdly, the dynamic programming method was used to optimize the location of the segmentation points and identify the single action. Finally, the testing experiments of continuous action segmentation and recognition were conducted with an open action database MSR Action3D. The experimental results show that the dynamic programming based on sliding window can optimize the selection of segmentation points to improve the recognition accuracy, which can be used to recognize continuous action.

Key words: Hidden Markov Model (HMM), action segmentation, action recognition, sliding window, dynamic programming

摘要: 针对现有动作识别中对连续动作识别研究较少且单一算法对连续动作识别效果较差的问题,提出在单个动作建模的基础上,采用滑动窗口法和动态规划法结合,实现连续动作的分割与识别。首先,采用深度置信网络和隐马尔可夫结合的模型DBN-HMM对单个动作建模;其次,运用所训练动作模型的对数似然值和滑动窗口法对连续动作进行评分估计,实现初始分割点的检测;然后,采用动态规划对分割点位置进行优化并对单个动作进行识别。在公开动作数据库MSR Action3D上进行连续动作分割与识别测试,结果表明基于滑动窗口的动态规划能够优化分割点的选取,进而提高识别精度,能够用于连续动作识别。

关键词: 隐马尔可夫模型, 动作分割, 动作识别, 滑动窗口, 动态规划

CLC Number: