[1] 杨春,王赟,杨德义.构造煤的地震可识别性特征[J].煤炭学报,2014,39(S2):465-470.(YANG C, WANG Y, YANG D Y. Discussion on seismic recognition of deformed coal[J]. Journal of China Coal Society, 2014, 39(S2):465-470. [2] 王恩营,殷秋朝,李丰良.构造煤的研究现状与发展趋势[J].河南理工大学学报(自然科学版),2008,27(3):278-281,293.(WANG E Y, YIN Q C, LI F L. Research state and its development trend of structure coal[J]. Journal of Henan Polytechnic University (Natural Science), 2008, 27(3):278-281, 293.) [3] 姚军朋,司马立强,张玉贵.构造煤地球物理测井定量判识研究[J].煤炭学报,2011,36(S1):94-98.(YAO J P, SIMA L Q, ZHANG Y G. Quantitative identification of deformed coals by geophysical logging[J]. Journal of China Coal Society, 2011, 36(S1):94-98.) [4] SON H, KIM C. Forecasting short-term electricity demand in the residential sector based on support vector regression and fuzzy-rough feature selection with particle swarm optimization[J]. Procedia Engineering, 2015, 118:1162-1168. [5] 黄太安,生佳根,徐红洋,等.一种改进的简化粒子群算法[J].计算机仿真,2013,30(2):327-330,335.(HUANG T A, SHENG J G, XU H Y, et al. Improved simplified particle swarm optimization[J]. Computer Simulation, 2013, 30(2):327-330, 335.) [6] 黄平.粒子群算法改进及其在电力系统的应用[D].广州:华南理工大学,2012:12-25.(HUANG P. Improved particle swarm algorithm and its application in power system[D]. Guangzhou:South China University of Technology, 2012:12-25.) [7] GHEISARI S, MEYBODI M R. BNC-PSO:Structure learning of Bayesian networks by particle swarm optimization[J]. Information Sciences, 2016, 348:272-289. [8] DENG C W, HUANG G B, XU J, et al. Extreme learning machines:new trends and applications[J]. Science China Information Sciences, 2015, 58(2):020301:1-020301:16. [9] 孔晓利.基于人工智能算法改进极限学习机的电力负荷预测[D].天津:天津理工大学,2016:10-38.(KONG X L. Improved extreme learning machine power load forecasting based on artificial intelligence algorithms [D]. Tianjin: Tianjin University of Technology, 2016: 10-38.) [10] 周召娣.极限学习机相关算法的优化及应用研究[D].南京:南京信息工程大学,2016:12-39.(ZHOU Z D. Research on optimization and application of extreme learning machine [D]. Nanjing: Nanjing University of Information Science and Technology, 2016: 12-39.) [11] 刘念,张清鑫,刘海涛.基于核函数极限学习机的微电网短期负荷预测方法[J].电工技术学报,2015,30(8):218-224.(LIU N, ZHANG Q X, LIU H T. Online short-term load forecasting based on ELM with kernel algorithm in micro-grid environment [J]. Transactions of China Electrotechnical Society, 2015, 30(8): 218-224.) [12] ZOU D X, LI S, LI Z Y, et al. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses [J]. Energy Conversion and Management, 2017, 139: 45-70. [13] LIU X W, WANG L, HUANG G B, et al. Multiple kernel extreme learning machine [J]. Neurocomputing, 2015, 149(PA): 253-264. [14] DING S F, ZHANG Y N, XU X Z, et al. A novel extreme learning machine based on hybrid kernel function [J]. Journal of Computers, 2013, 8(8): 2110-2117. [15] 陈雪振.基于极限学习机的变压器故障预测方法研究[D].北京:华北电力大学,2015:10-40.(CHEN X Z. Prediction method research of transformer fault based on extreme learning machine [D]. Beijing: North China Electric Power University, 2015: 10-40.) [16] WANG X, LI Y, CHEN T J, et al. Quantitative thickness prediction of tectonically deformed coal using extreme learning machine and principal component analysis: a case study [J]. Computers & Geosciences, 2017, 101(C): 38-47. [17] 陈同俊,王新,管永伟.基于SVR和地震属性的构造煤厚度定量预测[J].煤炭学报,2015,40(5):1103-1108.(CHEN T J, WANG X, GUAN Y W. Quantitative prediction of tectonic coal seam thickness using support vector regression and seismic attributes [J]. Journal of China Coal Society, 2015, 40(5): 1103-1108.) [18] MAHMOOD S F, MARHABAN M H, ROKHANI F Z, et al. SVM-ELM: pruning of extreme learning machine with support vector machines for regression [J]. Journal of Intelligent Systems, 2015, 25(4): 555-566. |