Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3330-3336.DOI: 10.11772/j.issn.1001-9081.2021111961
Special Issue: 第九届CCF大数据学术会议(CCF Bigdata 2021)
• CCF Bigdata 2021 • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Mei WANG1,2, Xiaohui SONG1, Yong LIU3,4( ), Chuanhai XU1
), Chuanhai XU1
												  
						
						
						
					
				
Received:2021-11-17
															
							
																	Revised:2021-12-13
															
							
																	Accepted:2021-12-23
															
							
							
																	Online:2022-01-04
															
							
																	Published:2022-11-10
															
							
						Contact:
								Yong LIU   
													About author:WANG Mei, born in 1976, Ph. D., professor. Her research interests include machine learning, kernel methods, model selection.Supported by:通讯作者:
					刘勇
							作者简介:王梅(1976—),女,河北保定人,教授,博士,CCF会员,主要研究方向:机器学习、核方法、模型选择基金资助:CLC Number:
Mei WANG, Xiaohui SONG, Yong LIU, Chuanhai XU. Neural tangent kernel K‑Means clustering[J]. Journal of Computer Applications, 2022, 42(11): 3330-3336.
王梅, 宋晓晖, 刘勇, 许传海. 神经正切核K‑Means聚类[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3330-3336.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021111961
| 数据集名称 | 维度 | 类别个数 | 样本数量 | 
|---|---|---|---|
| car | 6 | 4 | 1 728 | 
| breast‑tissue | 9 | 6 | 106 | 
| winequality‑red | 12 | 6 | 1 599 | 
| iris | 4 | 3 | 150 | 
Tab. 1 Experimental dataset information
| 数据集名称 | 维度 | 类别个数 | 样本数量 | 
|---|---|---|---|
| car | 6 | 4 | 1 728 | 
| breast‑tissue | 9 | 6 | 106 | 
| winequality‑red | 12 | 6 | 1 599 | 
| iris | 4 | 3 | 150 | 
| 数据集 | K‑Means | GKKM | NTKKM | 
|---|---|---|---|
| car | 0.706 | 0.731 | 0.811 | 
| breast tissue | 0.854 | 0.884 | 0.934 | 
| winequality‑red | 0.731 | 0.637 | 0.800 | 
| iris | 0.889 | 0.904 | 0.924 | 
Tab. 2 Accuracies of three algorithms
| 数据集 | K‑Means | GKKM | NTKKM | 
|---|---|---|---|
| car | 0.706 | 0.731 | 0.811 | 
| breast tissue | 0.854 | 0.884 | 0.934 | 
| winequality‑red | 0.731 | 0.637 | 0.800 | 
| iris | 0.889 | 0.904 | 0.924 | 
| 数据集 | K‑Means | GKKM | NTKKM | 
|---|---|---|---|
| car | 0.729 | 0.745 | 0.800 | 
| breast tissue | 0.712 | 0.761 | 0.840 | 
| winequality‑red | 0.758 | 0.501 | 0.801 | 
| iris | 0.867 | 0.710 | 0.822 | 
Tab. 3 Adjusted Rand indexes of three algorithms
| 数据集 | K‑Means | GKKM | NTKKM | 
|---|---|---|---|
| car | 0.729 | 0.745 | 0.800 | 
| breast tissue | 0.712 | 0.761 | 0.840 | 
| winequality‑red | 0.758 | 0.501 | 0.801 | 
| iris | 0.867 | 0.710 | 0.822 | 
| 数据集 | K‑Means | GKKM | NTKKM | 
|---|---|---|---|
| car | 0.581 | 0.561 | 0.651 | 
| breast tissue | 0.750 | 0.753 | 0.840 | 
| winequality‑red | 0.509 | 0.453 | 0.611 | 
| iris | 0.751 | 0.753 | 0.768 | 
Tab. 4 Fowlkes and Mallows Indexes of three algorithms
| 数据集 | K‑Means | GKKM | NTKKM | 
|---|---|---|---|
| car | 0.581 | 0.561 | 0.651 | 
| breast tissue | 0.750 | 0.753 | 0.840 | 
| winequality‑red | 0.509 | 0.453 | 0.611 | 
| iris | 0.751 | 0.753 | 0.768 | 
| 1 | FAHIM A M, SALEM A M, TORKEY F A, et al. An efficient enhanced k‑means clustering algorithm[J]. Journal of Zhejiang University — SCIENCE A (Applied Physics and Engineering), 2006, 7(10): 1626-1633. 10.1631/jzus.2006.a1626 | 
| 2 | 汪敏,武禹伯,闵帆. 基于多种聚类算法和多元线性回归的多分类主动学习算法[J]. 计算机应用, 2020, 40(12):3437-3444. 10.11772/j.issn.1001-9081.2020060921 | 
| WANG M, WU Y B, MIN F. Multi‑category active learning algorithm based on multiple clustering algorithms and multiple linear regression[J]. Journal of Computer applications, 2020, 40(12):3437-3444. 10.11772/j.issn.1001-9081.2020060921 | |
| 3 | LAWRENCE L O. A Primer on Cluster Analysis by James C. Bezdck[J]. IEEE Systems, Man, and Cybernetics Magazine, 2018, 4(1):48-50. 10.1109/msmc.2017.2769202 | 
| 4 | 于佐军,秦欢. 基于改进蜂群算法的K‑means算法[J]. 控制与决策, 2018, 33(1):181-185. | 
| YU Z J, QIN H. K‑means algorithm based on improved artificial bee swarm algorithm[J]. Control and Decision, 2018, 33(1):181-185. | |
| 5 | 覃华,詹娟娟,苏一丹. 基于概率无向图模型的近邻传播聚类算法[J]. 控制与决策, 2017, 32(10):1796-1802. 10.13195/j.kzyjc.2016.0861 | 
| QIN H, ZHAN J J, SU Y D. Affinity propagation clustering algorithm based on probabilistic undirected graphical model[J]. Control and Decision, 2017, 32(10): 1796-1802. 10.13195/j.kzyjc.2016.0861 | |
| 6 | 周涛,陆惠玲. 数据挖掘中聚类算法研究进展[J]. 计算机工程与应用, 2012, 48(12):100-111. 10.3778/j.issn.1002-8331.2012.12.021 | 
| ZHOU T, LU H L. Clustering algorithm research advances on data mining[J]. Computer Engineering and Applications, 2012, 48(12):100-111. 10.3778/j.issn.1002-8331.2012.12.021 | |
| 7 | GIROLAMI M. Mercer kernel‑based clustering in feature space[J]. IEEE Transactions on Neural Networks, 2002, 13(3):780-784. 10.1109/tnn.2002.1000150 | 
| 8 | 张莉,周伟达,焦李成. 核聚类算法[J]. 计算机学报, 2002, 25(6): 587-590. 10.3321/j.issn:0254-4164.2002.06.005 | 
| ZHANG L, ZHOU W D, JIAO L C. Kernel clustering algorithm[J]. Chinese Journal of Computers, 2002, 25(6): 587-590. 10.3321/j.issn:0254-4164.2002.06.005 | |
| 9 | BEN‑HUR A, HORN D, SIEGELMANN H T, et al. Support vector clustering[J]. Journal of Machine Learning Research, 2001, 2:125-137. | 
| 10 | 徐小来,房晓丽. 基于改进的直觉模糊核聚类的图像分割方法[J]. 计算机工程与应用, 2019, 55(17):227-231. 10.3778/j.issn.1002-8331.1904-0307 | 
| XU X L, FANG X L. Image segmentation method based on improved intuitive fuzzy kernel c‑means clustering algorithms[J]. Computer Engineering and Applications, 2019, 55(17):227-231. 10.3778/j.issn.1002-8331.1904-0307 | |
| 11 | 杨飞,朱志祥. 基于特征和空间信息的核模糊C-均值聚类算法[J]. 电子科技, 2016, 29(2):16-19. | 
| YANG F, ZHU Z X. Kernelized fuzzy C‑means clustering algorithm based on feature and spatial information[J]. Electronic Science and Technology, 2016, 29(2):16-19. | |
| 12 | XIANG L Y, ZHAO G H, LI Q, et al. A fast and effective multiple kernel clustering method on incomplete data[J]. Computers, Materials & Continua, 2021, 67(1):267-284. 10.32604/cmc.2021.013488 | 
| 13 | LIU X W, ZHU E, LIU J Y, et al. SimpleMKKM: simple multiple kernel k‑means[EB/OL]. (2020-05-12) [2021-07-20]. . 10.1109/tpami.2022.3198638 | 
| 14 | LIU Y, DING L. Nearly optimal risk bounds for kernel K‑means[EB/OL]. (2020-03-09) [2021-07-01].. | 
| 15 | 孔锐,张国宣,施泽生,等. 基于核的K-均值聚类[J]. 计算机工程, 2004, 30(11):12-13, 80. 10.3969/j.issn.1000-3428.2004.11.005 | 
| KONG R, ZHANG G X, SHI Z S, et al. Kernel‑based K‑means clustering[J]. Computer Engineering, 2004, 30(11):12-13, 80. 10.3969/j.issn.1000-3428.2004.11.005 | |
| 16 | NEAL R M. Bayesian Learning for Neural Networks[M]. New York: Springer, 1996: 29-53. 10.1007/978-1-4612-0745-0 | 
| 17 | LEE J, BAHRI Y, NOVAK R, et al. Deep neural networks as Gaussian processes[EB/OL]. (2018-03-03) [2020-05-19].. | 
| 18 | MATTHEWS A G D G, ROWLAND M, HRON J, et al. Gaussian process behaviour in wide deep neural networks[EB/OL]. (2018-08-16) [2020-05-19].. | 
| 19 | JACOT A, GABRIEL F, HONGLER C. Neural tangent kernel: convergence and generalization in neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018:8580-8589. | 
| 20 | ARORA S, DU S S, HU W, et al. On exact computation with an infinitely wide neural net[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2020-12-24].. | 
| 21 | 王梅,许传海,刘勇. 基于神经正切核的多核学习方法[J]. 计算机应用, 2021, 41(12):3462-3467. 10.11772/j.issn.1001-9081.2021060998 | 
| WANG M, XU C H, LIU Y. Multi‑kernel learning methods based on neural positive tangent kernel[J]. Journal of Computer Applications, 2021, 41(12):3462-3467. 10.11772/j.issn.1001-9081.2021060998 | |
| 22 | ARORA S, DU S S, LI Z Y, et al. Harnessing the power of infinitely wide deep nets on small‑data tasks[EB/OL]. (2019-10-27) [2021-01-08].. | 
| 23 | SCHÖLKOPF B, SEBASTIAN MIKA S, BURGES C J C, et al. Input space versus feature space in kernel‑based methods[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 1000-1017. 10.1109/72.788641 | 
| 24 | 王守志,何东健,李文,等. 基于核K-均值聚类算法的植物叶部病害识别[J]. 农业机械学报, 2009, 40(3):152-155. | 
| WANG S Z, HE D J, LI W, et al. Plant leaf disease identification based on the nuclear K‑means clustering algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 152-155. | |
| 25 | 王宇,李晓利. 核k-凝聚聚类算法[J]. 大连理工大学学报, 2007, 47(5):763-766. | 
| WANG Y, LI X L. Kernel k‑aggregate clustering algorithm[J]. Journal of Dalian University of Technology, 2007, 47(5): 763-766. | |
| 26 | HUO J, BI Y H, LÜ D R, et al. Cloud classification and distribution of cloud types in Beijing using Ka‑band radar data[J]. Advances in Atmospheric Sciences, 2019, 36(8):793-803. 10.1007/s00376-019-8272-1 | 
| 27 | TZORTZIS G, LIKAS A. The MinMax k‑Means clustering algorithm[J]. Pattern Recognition, 2014, 47(7):2505-2516. 10.1016/j.patcog.2014.01.015 | 
| 28 | 翟东海,鱼江,高飞,等. 最大距离法选取初始簇中心的K‑means文本聚类算法的研究[J]. 计算机应用研究, 2014, 31(3):713-715, 719. | 
| ZHAI D H, YU J, GAO F, et al. K‑means text clustering algorithm based on initial cluster centers selection according to maximum distance[J]. Application Research of Computers, 2014, 31(3):713-715, 719. | |
| 29 | DENG Z H, CHOI K S, CHUNG F L, et al. Enhanced soft subspace clustering integrating within‑cluster and between‑cluster information[J]. Pattern Recognition, 2010, 43(3):767-781. 10.1016/j.patcog.2009.09.010 | 
| 30 | HUANG X H, YE Y M, ZHANG H J. Extensions of kmeans‑type algorithms: a new clustering framework by integrating intra‑cluster compactness and inter‑cluster separation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(8): 1433-1446. 10.1109/tnnls.2013.2293795 | 
| 31 | PANG N, ZHAO X, WANG W, et al. Few‑shot text classification by leveraging bi‑directional attention and cross‑class knowledge[J]. Science China Information Sciences, 2021, 64(3): No.130103. 10.1007/s11432-020-3055-1 | 
| 32 | 黄学雨,程世超. KNN优化的密度峰值聚类算法[J]. 通信技术, 2021, 54(7):1608-1618. 10.3969/j.issn.1002-0802.2021.07.010 | 
| HUANG X Y, CHENG S C. KNN optimized density peak clustering algorithm[J]. Communication Technology, 2021, 54(7): 1608-1618. 10.3969/j.issn.1002-0802.2021.07.010 | |
| 33 | 王芙银,张德生,张晓. 结合鲸鱼优化算法的自适应密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(3):94-102. 10.3778/j.issn.1002-8331.2007-0205 | 
| WANG F Y, ZHANG D S, ZHANG X. Adaptive density peak clustering algorithm combining with whale optimization algorithm[J]. Computer Engineering and Applications, 2021, 57(3): 94-102. 10.3778/j.issn.1002-8331.2007-0205 | 
| [1] | Yunzhi QIU, Tinghua WANG, Xiaolu DAI. Doubly feature-weighted fuzzy support vector machine [J]. Journal of Computer Applications, 2022, 42(3): 683-687. | 
| [2] | Xiangzhou QI, Hongjie XING. Centered kernel alignment based multiple kernel one-class support vector machine [J]. Journal of Computer Applications, 2022, 42(2): 349-356. | 
| [3] | Mei WANG, Chuanhai XU, Yong LIU. Multi-kernel learning method based on neural tangent kernel [J]. Journal of Computer Applications, 2021, 41(12): 3462-3467. | 
| [4] | XIAO Qi, YIN Zengshan, GAO Shuang. Extremely dim target search algorithm based on detection and tracking mutual iteration [J]. Journal of Computer Applications, 2021, 41(10): 3017-3024. | 
| [5] | CHEN Hao, QIN Zhiguang, DING Yi. Multi-modal brain tumor segmentation method under same feature space [J]. Journal of Computer Applications, 2020, 40(7): 2104-2109. | 
| [6] | LI Fei, DU Liang, REN Chaohong. Multiple kernel concept factorization algorithm based on global fusion [J]. Journal of Computer Applications, 2019, 39(4): 1021-1026. | 
| [7] | SUN Shilei, WANG Chao, ZHAO Yuandi. Parameter independent clustering of air traffic trajectory based on silhouette coefficient [J]. Journal of Computer Applications, 2019, 39(11): 3293-3297. | 
| [8] | FAN Jun, WANG Xin, XU Hui. Prediction method of tectonic coal thickness based on particle swarm optimized hybrid kernel extreme learning machine [J]. Journal of Computer Applications, 2018, 38(6): 1820-1825. | 
| [9] | HU Lisha, WANG Suzhen, CHEN Yiqiang, HU Chunyu, JIANG Xinlong, CHEN Zhenyu, GAO Xingyu. Objective equilibrium measurement based kernelized incremental learning method for fall detection [J]. Journal of Computer Applications, 2018, 38(4): 928-934. | 
| [10] | ZHANG Leyuan, LI Jiaye, LI Pengqing. Low rank non-linear feature selection algorithm [J]. Journal of Computer Applications, 2018, 38(12): 3444-3449. | 
| [11] | NAN Jingchang, CUI Hongyan. Modeling of power amplifier based on dynamic X-parameter of new two-dimensional kernel function [J]. Journal of Computer Applications, 2017, 37(8): 2421-2426. | 
| [12] | GUO Qian, YANG Hongju, LIANG Xinyan. Image retrieval method based on new space relationship feature [J]. Journal of Computer Applications, 2016, 36(7): 1918-1922. | 
| [13] | LI Bin, DI Lan, WANG Shaohua, YU Xiaotong. Clustering algorithm with maximum distance between clusters based on improved kernel fuzzy C-means [J]. Journal of Computer Applications, 2016, 36(7): 1981-1987. | 
| [14] | LI Hua, LI Deyu, WANG Suge, ZHANG Jing. Kernel improvement of multi-label feature extraction method [J]. Journal of Computer Applications, 2015, 35(7): 1939-1944. | 
| [15] | WANG Weidong, LIU Bing, GUAN Hongjie, ZHOU Yong, XIA Shixiong. Spectral embedded clustering algorithm based on kernel function [J]. Journal of Computer Applications, 2015, 35(3): 761-765. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||