Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1855-1860.DOI: 10.11772/j.issn.1001-9081.2022060885
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Received:
2022-06-20
Revised:
2022-08-04
Accepted:
2022-08-11
Online:
2022-10-11
Published:
2023-06-10
Contact:
Chengyun SONG
About author:
QIU Lianpeng, born in 1995, M. S. candidate. Her research interests include big data, intelligent signal processing.
Supported by:
通讯作者:
宋承云
作者简介:
邱莲鹏(1995—),女,甘肃定西人,硕士研究生,主要研究方向:大数据、智能信号处理CLC Number:
Lianpeng QIU, Chengyun SONG. Noise robust dynamic time warping algorithm[J]. Journal of Computer Applications, 2023, 43(6): 1855-1860.
邱莲鹏, 宋承云. 噪声鲁棒的动态时间规整算法[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1855-1860.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060885
数据集 | 类别数 | 训练集数 | 测试集数 | 序列长度 |
---|---|---|---|---|
BeetleFly | 2 | 20 | 20 | 512 |
BirdChicken | 2 | 20 | 20 | 512 |
DistalPhalanxTW | 6 | 139 | 400 | 80 |
Fish | 7 | 175 | 175 | 463 |
Gun-Point | 2 | 50 | 150 | 150 |
Symbols | 6 | 25 | 995 | 398 |
ToeSegmentation1 | 2 | 40 | 228 | 277 |
ToeSegmentation2 | 2 | 36 | 130 | 343 |
Tab. 1 Information of datasets
数据集 | 类别数 | 训练集数 | 测试集数 | 序列长度 |
---|---|---|---|---|
BeetleFly | 2 | 20 | 20 | 512 |
BirdChicken | 2 | 20 | 20 | 512 |
DistalPhalanxTW | 6 | 139 | 400 | 80 |
Fish | 7 | 175 | 175 | 463 |
Gun-Point | 2 | 50 | 150 | 150 |
Symbols | 6 | 25 | 995 | 398 |
ToeSegmentation1 | 2 | 40 | 228 | 277 |
ToeSegmentation2 | 2 | 36 | 130 | 343 |
数据集 | ED | DTW | Sakoe-Chiba窗口DTW | WDTW | NoiseDTW |
---|---|---|---|---|---|
BeetleFly | 0.700 | 0.700 | 0.700 | 0.800 | |
BirdChicken | 0.550 | 0.700 | 0.900 | ||
DistalPhalanxTW | 0.727 | 0.710 | 0.604 | 0.758 | |
Fish | 0.783 | 0.823 | 0.846 | 0.874 | |
Gun-Point | 0.907 | 0.980 | 0.980 | ||
Symbols | 0.900 | 0.938 | 0.960 | ||
ToeSegmentation1 | 0.680 | 0.772 | 0.750 | 0.829 | |
ToeSegmentation2 | 0.808 | 0.838 | 0.892 | 0.920 |
Tab. 2 Classification accuracy on 8 time series datasets
数据集 | ED | DTW | Sakoe-Chiba窗口DTW | WDTW | NoiseDTW |
---|---|---|---|---|---|
BeetleFly | 0.700 | 0.700 | 0.700 | 0.800 | |
BirdChicken | 0.550 | 0.700 | 0.900 | ||
DistalPhalanxTW | 0.727 | 0.710 | 0.604 | 0.758 | |
Fish | 0.783 | 0.823 | 0.846 | 0.874 | |
Gun-Point | 0.907 | 0.980 | 0.980 | ||
Symbols | 0.900 | 0.938 | 0.960 | ||
ToeSegmentation1 | 0.680 | 0.772 | 0.750 | 0.829 | |
ToeSegmentation2 | 0.808 | 0.838 | 0.892 | 0.920 |
数据集 | DTW/s | WDTW/s | NoiseDTW/s |
---|---|---|---|
BeetleFly | 5 | 58 | 43 |
BirdChicken | 4 | 60 | 42 |
DistalPhalanxTW | 14 | 159 | 184 |
Fish | 194 | 3 394 | 2 144 |
Gun-Point | 6 | 76 | 72 |
Symbols | 102 | 1 980 | 1 016 |
ToeSegmentation1 | 17 | 326 | 225 |
ToeSegmentation2 | 12 | 266 | 162 |
Tab. 3 Comparison of time overhead of three algorithms
数据集 | DTW/s | WDTW/s | NoiseDTW/s |
---|---|---|---|
BeetleFly | 5 | 58 | 43 |
BirdChicken | 4 | 60 | 42 |
DistalPhalanxTW | 14 | 159 | 184 |
Fish | 194 | 3 394 | 2 144 |
Gun-Point | 6 | 76 | 72 |
Symbols | 102 | 1 980 | 1 016 |
ToeSegmentation1 | 17 | 326 | 225 |
ToeSegmentation2 | 12 | 266 | 162 |
1 | KANGINEJAD A, MANI-VARNOSFADERANI A. Chemometrics advances on the challenges of the gas chromatography-mass spectrometry metabolomics data: a review[J]. Journal of the Iranian Chemical Society, 2018, 15(12): 2733-2745. 10.1007/s13738-018-1461-5 |
2 | PETITJEAN F, INGLADA J, GANCARSKI P. Satellite image time series analysis under time warping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3081-3095. 10.1109/tgrs.2011.2179050 |
3 | PERMANASARI Y, HARAHAP E H, ALI E P. Speech recognition using Dynamic Time Warping (DTW)[J]. Journal of Physics: Conference Series, 2019, 1366: No.012091. 10.1088/1742-6596/1366/1/012091 |
4 | ZHOU Y W, ZHENG J B, HU H C, et al. Handwritten signature verification method based on improved combined features[J]. Applied Sciences, 2021, 11(13): No.5867. 10.3390/app11135867 |
5 | 王敏,朱明. 基于复杂网络理论的空中交通流时间序列分析[J]. 航空计算技术, 2020, 50(5):61-65. 10.3969/j.issn.1671-654X.2020.05.015 |
WANG M, ZHU M. Analysis of air traffic flow time series based on complex network theory[J]. Aeronautical Computing Technique, 2020, 50(5):61-65. 10.3969/j.issn.1671-654X.2020.05.015 | |
6 | 王子一,商琳. 基于子段距离计算的时间序列分类方法[J]. 小型微型计算机系统, 2018, 39(7):1386-1389. 10.3969/j.issn.1000-1220.2018.07.003 |
WANG Z Y, SHANG L. New method of time series classification based on sub-sequence distance computation[J]. Journal of Chinese Computer Systems, 2018, 39(7):1386-1389. 10.3969/j.issn.1000-1220.2018.07.003 | |
7 | LI M, ZHU Y, ZHAO T G, et al. Weighted dynamic time warping for traffic flow clustering[J]. Neurocomputing, 2022, 472: 266-279. 10.1016/j.neucom.2020.12.138 |
8 | LEE D, YU S, JU H, et al. Weakly supervised temporal anomaly segmentation with dynamic time warping [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7335-7344. 10.1109/iccv48922.2021.00726 |
9 | 李海林,梁叶,王少春. 时间序列数据挖掘中的动态时间弯曲研究综述[J]. 控制与决策, 2018, 33(8): 1345-1353. |
LI H L, LIANG Y, WANG S C. Review on dynamic time warping in time series data mining [J]. Control and Decision, 2018, 33(8): 1345-1353. | |
10 | KEOGH E, RATANAMAHATANA C A. Exact indexing of dynamic time warping [J]. Knowledge and Information Systems, 2005, 7(3): 358-386. 10.1007/s10115-004-0154-9 |
11 | KEOGH E J, PAZZANI M J. Derivative dynamic time warping[C]// Proceedings of the 2001 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2001: 1-11. 10.1137/1.9781611972719.1 |
12 | 王见,毛黎明,尹爱军. 结合形状特征及其上下文的多维DTW[J]. 计算机工程与应用, 2020, 56(22): 42-47. |
WANG J, MAO L M, YIN A J. Multi-dimensional DTW combined with shape feature and context information [J]. Computer Engineering and Applications, 2020, 56(22): 42-47. | |
13 | JEONG Y S, JEONG M K, OMITAOMU O A. Weighted dynamic time warping for time series classification[J]. Pattern Recognition, 2011, 44(9): 2231-2240. 10.1016/j.patcog.2010.09.022 |
14 | BATISTA G E A P A, WANG X Y, KEOGH E J. A complexity-invariant distance measure for time series [C]// Proceedings of the 2011 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2011: 699-710. 10.1137/1.9781611972818.60 |
15 | SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43-49. 10.1109/tassp.1978.1163055 |
16 | ITAKURA F. Minimum prediction residual principle applied to speech recognition [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1975, 23(1): 67-72. 10.1109/tassp.1975.1162641 |
17 | MOREL M, ACHARD C, KULPA R, et al. Time-series averaging using constrained dynamic time warping with tolerance [J]. Pattern Recognition, 2018, 74: 77-89. 10.1016/j.patcog.2017.08.015 |
18 | VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders [C]// Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008: 1096-1103. 10.1145/1390156.1390294 |
19 | GIORGINO T. Computing and visualizing dynamic time warping alignments in R: the dtw package[J]. Journal of Statistical Software, 2009, 31(7): 1-24. 10.18637/jss.v031.i07 |
20 | GELER Z, KURBALIJA V, RADOVANOVIĆ M, et al. Impact of the Sakoe-Chiba band on the DTW time series distance measure for kNN classification [C]// Proceedings of the 2014 International Conference on Knowledge Science, Engineering and Management, LNCS 8793. Cham: Springer, 2014: 105-114. |
21 | DAU H A, KEOGH, E, KAMGAR K, et al. The UCR time series classification archive [EB/OL]. (2018-10) [2022-06-20].. 10.1109/jas.2019.1911747 |
[1] | Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns [J]. Journal of Computer Applications, 2024, 44(9): 2747-2755. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Qinzhuang ZHAO, Hongye TAN. Time series causal inference method based on adaptive threshold learning [J]. Journal of Computer Applications, 2024, 44(9): 2660-2666. |
[4] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. |
[5] | Zixuan YUAN, Xiaoqing WENG, Ningzhen GE. Early classification model of multivariate time series based on orthogonal locality preserving projection and cost optimization [J]. Journal of Computer Applications, 2024, 44(6): 1832-1841. |
[6] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[7] | Hongtao SONG, Jiangsheng YU, Qilong HAN. Industrial multivariate time series data quality assessment method [J]. Journal of Computer Applications, 2024, 44(6): 1743-1750. |
[8] | Fan MENG, Qunli YANG, Jing HUO, Xinkuan WANG. EraseMTS: iterative active multivariable time series anomaly detection algorithm based on margin anomaly candidate set [J]. Journal of Computer Applications, 2024, 44(5): 1458-1463. |
[9] | Shuai REN, Yuanfa JI, Xiyan SUN, Zhaochuan WEI, Zian LIN. Prediction of landslide displacement based on improved grey wolf optimizer and support vector regression [J]. Journal of Computer Applications, 2024, 44(3): 972-982. |
[10] | Yiyang FAN, Yang ZHANG, Shang ZENG, Yu ZENG, Maoli FU. Multivariate long-term series forecasting model based on decomposition and frequency domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3442-3448. |
[11] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[12] | Yu ZENG, Yang ZHANG, Shang ZENG, Maoli FU, Qixue HE, Linlong ZENG. Time series prediction algorithm based on multi-scale gated dilated convolutional network [J]. Journal of Computer Applications, 2024, 44(11): 3427-3434. |
[13] | Hui JIANG, Qiuyan YAN, Zhujun JIANG. Symmetric positive definite autoencoder method for multivariate time series anomaly detection [J]. Journal of Computer Applications, 2024, 44(10): 3294-3299. |
[14] | Lishuo YE, Zhixue HE. Multiscale time series anomaly detection incorporating wavelet decomposition [J]. Journal of Computer Applications, 2024, 44(10): 3300-3306. |
[15] | Kai XU, Qikai GAO, Ming YIN, Jingjing TAN. Trajectory similarity measurement algorithm based on three-dimensional space area division [J]. Journal of Computer Applications, 2024, 44(1): 318-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||