Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3192-3199.DOI: 10.11772/j.issn.1001-9081.2021010046
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Yubin ZHOU1, Hong XIAO1, Tao WANG2, Wenchao JIANG1,3(), Meng XIONG3, Zhongtang HE3
Received:
2021-01-11
Revised:
2021-05-14
Accepted:
2021-05-18
Online:
2021-11-29
Published:
2021-11-10
Contact:
Wenchao JIANG
About author:
ZHOU Yubin, born in 1997, M. S. candidate. Her research
interests include fault diagnosis and prediction of industrial equipmentSupported by:
周玉彬1, 肖红1, 王涛2, 姜文超1,3(), 熊梦3, 贺忠堂3
通讯作者:
姜文超
作者简介:
周玉彬(1997—),女,湖南常德人,硕士研究生,主要研究方向:工业设备的故障诊断与预测基金资助:
CLC Number:
Yubin ZHOU, Hong XIAO, Tao WANG, Wenchao JIANG, Meng XIONG, Zhongtang HE. Health index construction and remaining useful life prediction of mechanical axis based on action cycle degradation similarity measurement[J]. Journal of Computer Applications, 2021, 41(11): 3192-3199.
周玉彬, 肖红, 王涛, 姜文超, 熊梦, 贺忠堂. 基于动作周期退化相似性度量的机械轴健康指标构建与剩余寿命预测[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3192-3199.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010046
方法 | 周期未对齐距离 |
---|---|
MPdist | 0 |
DTW | 10 709 |
ED | 43 559 |
Tab. 1 Misaligned distance comparison of action cycle of different methods
方法 | 周期未对齐距离 |
---|---|
MPdist | 0 |
DTW | 10 709 |
ED | 43 559 |
参数 | 符号 | 参数 | 符号 |
---|---|---|---|
指令位置 | pcmd | 反馈加速度 | afb |
反馈位置 | pfb | 指令速度 | vcmd |
指令力矩 | tcmd | 反馈速度 | vfb |
反馈力矩 | tfb | 位置误差 | pe |
指令加速度 | acmd |
Tab. 2 Description of variable name
参数 | 符号 | 参数 | 符号 |
---|---|---|---|
指令位置 | pcmd | 反馈加速度 | afb |
反馈位置 | pfb | 指令速度 | vcmd |
指令力矩 | tcmd | 反馈速度 | vfb |
反馈力矩 | tfb | 位置误差 | pe |
指令加速度 | acmd |
单调性 | 鲁棒性 | 趋势性 | |
---|---|---|---|
2∶1 | 0.237 0 | 0.835 0 | 0.678 4 |
3∶1 | 0.468 2 | 0.961 5 | 0.864 7 |
4∶1 | 0.537 6 | 0.966 5 | 0.887 0 |
5∶1 | 0.560 7 | 0.968 4 | 0.906 5 |
6∶1 | 0.546 0 | 0.967 9 | 0.895 2 |
7∶1 | 0.560 7 | 0.967 9 | 0.906 5 |
8∶1 | 0.551 7 | 0.966 5 | 0.880 6 |
Tab. 3 Comparison of evaluation results of MP distance curves with different ratios
单调性 | 鲁棒性 | 趋势性 | |
---|---|---|---|
2∶1 | 0.237 0 | 0.835 0 | 0.678 4 |
3∶1 | 0.468 2 | 0.961 5 | 0.864 7 |
4∶1 | 0.537 6 | 0.966 5 | 0.887 0 |
5∶1 | 0.560 7 | 0.968 4 | 0.906 5 |
6∶1 | 0.546 0 | 0.967 9 | 0.895 2 |
7∶1 | 0.560 7 | 0.967 9 | 0.906 5 |
8∶1 | 0.551 7 | 0.966 5 | 0.880 6 |
方法 | 单调性 | 鲁棒性 | 趋势性 |
---|---|---|---|
MPdist | 0.560 7 | 0.968 4 | 0.906 5 |
DTW | 0.491 3 | 0.969 6 | 0.770 6 |
ED | 0.058 0 | 0.950 2 | 0.203 7 |
TDE | 0.132 9 | 0.952 4 | 0.310 6 |
Tab. 4 Health index evaluation
方法 | 单调性 | 鲁棒性 | 趋势性 |
---|---|---|---|
MPdist | 0.560 7 | 0.968 4 | 0.906 5 |
DTW | 0.491 3 | 0.969 6 | 0.770 6 |
ED | 0.058 0 | 0.950 2 | 0.203 7 |
TDE | 0.132 9 | 0.952 4 | 0.310 6 |
时间步 | MAE | RMSE | |
---|---|---|---|
3 | 0.036 6 | 0.065 2 | 0.957 5 |
6 | 0.028 9 | 0.056 9 | 0.966 9 |
10 | 0.036 6 | 0.070 5 | 0.947 2 |
20 | 0.032 4 | 0.076 3 | 0.928 5 |
Tab. 5 Evaluation of LSTM network time step adjustment
时间步 | MAE | RMSE | |
---|---|---|---|
3 | 0.036 6 | 0.065 2 | 0.957 5 |
6 | 0.028 9 | 0.056 9 | 0.966 9 |
10 | 0.036 6 | 0.070 5 | 0.947 2 |
20 | 0.032 4 | 0.076 3 | 0.928 5 |
方法 | MAE | RMSE | ER | EP | LP | |
---|---|---|---|---|---|---|
MPdist-LSTM | 0.028 9 | 0.056 9 | 0.966 9 | [ | 19 | 13 |
MPdist-RNN | 0.030 5 | 0.067 1 | 0.943 7 | 15 | 18 | |
DTW-LSTM | 0.033 8 | 0.072 1 | 0.935 8 | 14 | 20 | |
TDE-LSTM | 0.104 7 | 0.134 6 | 0.781 8 | 16 | 18 | |
LSTM | 0.106 4 | 0.210 4 | 0.501 9 | 15 | 19 |
Tab. 6 Evaluation of remaining useful life prediction
方法 | MAE | RMSE | ER | EP | LP | |
---|---|---|---|---|---|---|
MPdist-LSTM | 0.028 9 | 0.056 9 | 0.966 9 | [ | 19 | 13 |
MPdist-RNN | 0.030 5 | 0.067 1 | 0.943 7 | 15 | 18 | |
DTW-LSTM | 0.033 8 | 0.072 1 | 0.935 8 | 14 | 20 | |
TDE-LSTM | 0.104 7 | 0.134 6 | 0.781 8 | 16 | 18 | |
LSTM | 0.106 4 | 0.210 4 | 0.501 9 | 15 | 19 |
1 | 王桃章,王宇,王宇斐,等.深度学习在机器人加工颤振辨识中的应用[J].机械科学与技术,2021,40(2):188-192. 10.1016/j.ast.2020.106435 |
WANG T Z, WANG Y, WANG Y F, et al. Application of deep learning in robot chatter identification [J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 188-192. 10.1016/j.ast.2020.106435 | |
2 | 周济.智能制造是“中国制造2025”主攻方向[J].企业观察家,2019(11):54-55. 10.3969/j.issn.1004-132X.2015.17.001 |
ZHOU J. Intelligent manufacturing is the main direction of “made in China 2025” [J]. Enterprise Observer, 2019(11): 54-55. 10.3969/j.issn.1004-132X.2015.17.001 | |
3 | 赵威,王锴,徐皑冬,等.面向智能制造的工业机器人健康评估方法[J].机器人,2020,42(4):460-468. 10.13973/j.cnki.robot.190438 |
ZHAO W, WANG K, XU A D, et al. An industrial robot health assessment method for intelligent manufacturing [J]. Robot, 2020, 42(4): 460-468. 10.13973/j.cnki.robot.190438 | |
4 | 彭宇,刘大同.数据驱动故障预测和健康管理综述[J].仪器仪表学报,2014,35(3):481-495. 10.3969/j.issn.0254-3087.2014.03.001 |
PENG Y, LIU D T. Data-driven prognostics and health management: a review of recent advances [J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 481-495. 10.3969/j.issn.0254-3087.2014.03.001 | |
5 | KUMAR H S, PAI S P, SRIRAM N S, et al. Rolling element bearing fault diagnostics: development of health index [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(21): 3923-3939. 10.1177/0954406216656214 |
6 | 彭开香,皮彦婷,焦瑞华,等.航空发动机的健康指标构建与剩余寿命预测[J].控制理论与应用,2020,37(4):713-720. 10.7641/CTA.2019.90039 |
PENG K X, PI Y T, JIAO R H, et al. Health indicator construction and remaining useful life prediction for aircraft engine [J]. Control Theory and Applications, 2020, 37(4):713-720. 10.7641/CTA.2019.90039 | |
7 | GUO L, LEI Y G, LI N P, et al. Deep convolution feature learning for health indicator construction of bearings [C]// Proceedings of the 2017 Prognostics and System Health Management Conference. Piscataway: IEEE, 2017: 1-6. 10.1109/phm.2017.8079167 |
8 | GUO L, LEI Y G, LI N P, et al. Machinery health indicator construction based on convolutional neural networks considering trend burr [J]. Neurocomputing, 2018, 292: 142-150. 10.1016/j.neucom.2018.02.083 |
9 | CHEN L T, XU G H, ZHANG S C, et al. Health indicator construction of machinery based on end-to-end trainable convolution recurrent neural networks [J]. Journal of Manufacturing Systems, 2020, 54: 1-11. 10.1016/j.jmsy.2019.11.008 |
10 | MAO W T, LIU Y M, DING L, et al. A new structured domain adversarial neural network for transfer fault diagnosis of rolling bearings under different working conditions [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No.3509013. 10.1109/tim.2020.3038596 |
11 | 赵浩铭.基于信号分析的工业机器人故障诊断研究[D].沈阳:沈阳建筑大学,2014:1-27. 10.18057/ijasc.2015.11.1.4 |
ZHAO H M. The fault diagnostic studies of industrial robot based on signal analysis [D]. Shenyang: Shenyang Jianzhu University, 2014: 1-27. 10.18057/ijasc.2015.11.1.4 | |
12 | JABER A A, BICKER R. Development of a condition monitoring algorithm for industrial robots based on artificial intelligence and signal processing techniques [J]. International Journal of Electrical and Computer Engineering, 2018, 8(2): 996-1009. 10.11591/ijece.v8i2.pp996-1009 |
13 | FINK O, WANG Q, SVENSÉN M, et al. Potential, challenges and future directions for deep learning in prognostics and health management applications [J]. Engineering Applications of Artificial Intelligence, 2020, 92: Article No.103678. 10.1016/j.engappai.2020.103678 |
14 | CHEN Y H, WANG H L, ZHANG J, et al. Automated recognition of robotic manipulation failures in high-throughput biodosimetry tool [J]. Expert Systems with Applications, 2012, 39(10): 9602-9611. 10.1016/j.eswa.2012.02.145 |
15 | ALGBURI R N A, GAO H L. Health assessment and fault detection system for an industrial robot using the rotary encoder signal [J]. Energies, 2019, 12(14): Article No.2816. 10.3390/en12142816 |
16 | JABER A A, BICKER R. Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network [J]. Insight: Non-Destructive Testing and Condition Monitoring, 2016, 58(4): 179-186. 10.1784/insi.2016.58.4.179 |
17 | GHARGHABI S, IMANI S, BAGNALL A, et al. Matrix Profile XII: MPdist: a novel time series distance measure to allow data mining in more challenging scenarios [C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 965-970. 10.1109/icdm.2018.00119 |
18 | YEH C C M, ZHU Y, ULANOVA L, et al. Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets [C]// Proceedings of the 2016 IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 1317-1322. 10.1109/icdm.2016.0179 |
19 | SENIN P. Dynamic time warping algorithm review [EB/OL]. [2020-12-22].. |
20 | JEONG Y S, JEONG M K, OMITAOMU O A. Weighted dynamic time warping for time series classification [J]. Pattern Recognition, 2011, 44(9): 2231-2240. 10.1016/j.patcog.2010.09.022 |
21 | ZHANG B, ZHANG L J, XU J W. Degradation feature selection for remaining useful life prediction of rolling element bearings [J]. Quality and Reliability Engineering International, 2016, 32(2): 547-554. 10.1002/qre.1771 |
22 | GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM [J]. Neural Computation, 2000, 12(10): 2451-2471. 10.1162/089976600300015015 |
23 | ELSHEIKH A, YACOUT S, OUALI M S. Bidirectional handshaking LSTM for remaining useful life prediction [J]. Neurocomputing, 2019, 323: 148-156. 10.1016/j.neucom.2018.09.076 |
24 | ZHANG C, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics [J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(10): 2306-2318. 10.1109/tnnls.2016.2582798 |
25 | LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks [J]. Reliability Engineering and System Safety, 2018, 172: 1-11. 10.1016/j.ress.2017.11.021 |
26 | ZHANG J J, WANG P, YAN R Q, et al. Long short-term memory for machine remaining life prediction [J]. Journal of Manufacturing Systems, 2018, 48(Pt C): 78-86. 10.1016/j.jmsy.2018.05.011 |
[1] | Xiaoyu HUA, Dongfen LI, You FU, Kejun BI, Shi YING, Ruijin WANG. Industrial chain risk assessment and early warning model combining hierarchical graph neural network and long short-term memory [J]. Journal of Computer Applications, 2024, 44(10): 3223-3231. |
[2] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. |
[3] | Kai XU, Qikai GAO, Ming YIN, Jingjing TAN. Trajectory similarity measurement algorithm based on three-dimensional space area division [J]. Journal of Computer Applications, 2024, 44(1): 318-323. |
[4] | Zhiping ZHU, Yan YANG, Jie WANG. Scene graph-aware cross-modal image captioning model [J]. Journal of Computer Applications, 2024, 44(1): 58-64. |
[5] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. |
[6] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
[7] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. |
[8] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
[9] | Bennian YU, Yongzhao ZHAN, Qirong MAO, Wenlong DONG, Honglin LIU. Double complex convolution and attention aggregating recurrent network for speech enhancement [J]. Journal of Computer Applications, 2023, 43(10): 3217-3224. |
[10] | LIU Hui, MA Xiang, ZHANG Linyu, HE Rujin. Aspect-based sentiment analysis model integrating match-LSTM network and grammatical distance [J]. Journal of Computer Applications, 2023, 43(1): 45-50. |
[11] | ZHANG Jun, WU Pengli, SHI Lukui, SHI Jin, PAN Bin. Deep learning model for multi-station temperature prediction combined with MOD11A1 and surface meteorological station data [J]. Journal of Computer Applications, 2023, 43(1): 321-328. |
[12] | Yinglü XUAN, Yuan WAN, Jiahui CHEN. Time series classification by LSTM based on multi-scale convolution and attention mechanism [J]. Journal of Computer Applications, 2022, 42(8): 2343-2352. |
[13] | Yifei WANG, Lei YU, Fei TENG, Jiayu SONG, Yue YUAN. Resource load prediction model based on long-short time series feature fusion [J]. Journal of Computer Applications, 2022, 42(5): 1508-1515. |
[14] | An YANG, Qun JIANG, Gang SUN, Jie YIN, Ying LIU. Power data analysis based on financial technical indicators [J]. Journal of Computer Applications, 2022, 42(3): 904-910. |
[15] | Chong CHEN, Zhu YAN, Jixuan ZHAO, Wei HE, Huaqing LIANG. Prediction of NOx emission from fluid catalytic cracking unit based on ensemble empirical mode decomposition and long short-term memory network [J]. Journal of Computer Applications, 2022, 42(3): 791-796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||