[1] KYLE S D, ESPIE C A. The HUNT continues and gathers pace:shedding light on the relationship between insomnia and ill healthy[J]. Journal of Sleep Research, 2014, 23(2):121-123. [2] DA S T, KOZAKEVICIUS A J, RODRIGUES C R. Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain[J]. Medical and Biological Engineering and Computing, 2017, 55(2):1-10. [3] TSINALIS O, MATTHEWS P M, GUO Y. Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders[J]. Annals of Biomedical Engineering, 2016, 44(5):1587-1597. [4] NAKAMURA T, ADJEI T, ALQURASHI Y, et al. Complexity science for sleep stage classification from EEG[C]//Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2017:4387-4394. [5] AMODEI D, ANUBHAI R, BATTENBERG E, et al. Deep speech 2:end-to-end speech recognition in English and Mandarin[EB/OL].[2015-12-08]. http://proceedings.mlr.press/v48/amodei16.pdf. [6] RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[EB/OL].[2017-07-06]. http://xueshu.baidu.com/s?wd=paperuri%3A%28733ed03de00a3209cfcbb7e651047ddf%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.org%2Fpdf%2F1707.01836&ie=utf-8&sc_us=17562283920064155983. [7] ESTEVA A, KUPREL B, NOVOA R A, et al. Corrigendum:dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639):115-118. [8] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. Jama, 2016, 316(22):2402-2411. [9] HANNUN A, CASE C, CASPER J, et al. Deep speech:scaling up end-to-end speech recognition[EB/OL].[2014-12-19]. http://web.stanford.edu/class/cs224s/papers/baidu_speech.pdf. [10] WANG J, YU L C, LAI K R, et al. Dimensional sentiment analysis using a regional CNN-LSTM model[EB/OL].[2017-12-11]. http://www.aclweb.org/anthology/P/P16/P16-2037.pdf. [11] TSINALIS O, MATTHEWS P M, GUO Y, et al. Automatic sleep stage scoring with single-channel EEG using convolutional neural networks[EB/OL].[2016-10-05]. http://xueshu.baidu.com/s?wd=paperuri%3A%284f2f11d92bb57d7a8b02a0ad792a9478%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.org%2Fpdf%2F1610.01683&ie=utf-8&sc_us=3154002015441067732. [12] SUPRATAK A, DONG H, WU C, et al. DeepSleepNet:a model for automatic sleep stage scoring based on raw single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11):1998-2008. [13] HU S, LIANG Y, MA L, et al. MSMOTE:improving classification performance when training data is imbalanced[C]//IWCSE'09:Proceedings of the 20092nd International Workshop on Computer Science and Engineering. Washington, DC:IEEE Computer Society, 2009, 2:13-17. [14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778. [15] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2017-12-20]. http://proceedings.mlr.press/v37/ioffe15.pdf. [16] RAMACHANDRAN P, ZOPH B, LE Q V. Swish:a self-gated activation function[EB/OL].[2017-10-27]. http://xueshu.baidu.com/s?wd=paperuri%3A%2829e84daf3ac69561b1408e4fa0638c79%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.org%2Fpdf%2F1710.05941v1&ie=utf-8&sc_us=7597521573451541055. [17] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4):212-223. [18] 王文朋,毛文涛,何建樑,等.基于深度迁移学习的烟雾识别方法[J].计算机应用,2017,37(11):3176-3181.(WANG W P, MAO W T, HE J L, et al. Smoke recognition based on deep transfer learning[J]. Journal of Computer Applications, 2017, 37(11):3176-3181.) [19] 李彦冬,郝宗波,雷航.卷积神经网络研究综述[J].计算机应用,2016,36(9):2508-2515.(LI Y D, HAO Z B, LEI H. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9):2508-2515.) |