[1] EMANI C K, CULLOT N, NICOLLE C. Understandable big data:a survey[J]. Computer Science Review, 2015, 17:70-81. [2] 李国杰, 程学旗. 大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27(6):647-657. (LI G J, CHENG X Q. Big data research:the important strategic field of future science and technology, development of economic and social-research status and scientific thinking of big data[J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(6):647-657.) [3] ZHOU Z H, CHAWLA N V, JIN Y C, et al. Big data opportunities and challenges:discussions from data analytics perspectives[J]. IEEE Computational Intelligence Magazine, 2014, 9(4):62-74. [4] SETTLES B. Active learning literature survey[R]. Madison, WI, USA:University of Wisconsin-Madison, Department of Computer Science, 2010. [5] ANGLUIN D. Queries and concept learning[J]. Machine Learning, 1988, 2(4):319-342. [6] HUANG S J, JIN R, ZHOU Z H. Active learning by querying informative and representative examples[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10):1936-1949. [7] DU B, WANG Z M, ZHANG L F, et al. Exploring representativeness and informativeness for active learning[J]. IEEE Transactions on Cybernetics, 2017, 47(1):14-26. [8] ZHANG X, WANG S, YUN X. Bidirectional active learning:a two-way exploration into unlabeled and labeled data set[J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(12):3034-3044. [9] CHAKRABORTY S, BALASUBRAMANIAN V, PANCHANATHAN S. Adaptive batch mode active learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(8):1747-1760. [10] CARDOSO T N C, SILVA R M, CANUTO S, et al. Ranked batch-mode active learning[J]. Information Sciences, 2017, 379:313-337. [11] LONG B, BIAN J, CHAPELLE O, et al. Active learning for ranking through expected loss optimization[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5):1180-1191. [12] GU Y, JIN Z, CHIU S C. Active learning combining uncertainty and diversity for multi-class image classification[J]. IET Computer Vision, 2015, 9(3):400-407. [13] WANG R, WANG X Z, KWONG S, et al. Incorporating diversity and informativeness in multiple-instance active learning[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6):1460-1475. [14] DU B, WANG Z M, ZHANG L F, et al. Robust and discriminative labeling for multi-label active learning based on maximum correntropy criterion[J]. IEEE Transactions on Image Processing, 2017, 26(4):1694-1707. [15] SHEN P, LI C, ZHANG Z. Distributed active learning[J]. IEEE Access, 2016, 4:2572-2579. [16] LIPOR J, WONG B P, SCAVIA D, et al. Distance-penalized active learning using quantile search[J]. IEEE Transactions on Signal Processing, 2017, 65(20):5453-5465. [17] COHN D, ATLAS L, LADNER R. Improving generalization with active learning[J]. Machine Learning, 1994, 15(2):201-221. [18] DAGAN I, ENGELSON S. Committee-based sampling for training probabilistic classifiers[C]//Proceedings of the 12th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann, 1995, 150-157. [19] SMAILOVIC J, GRCAR M, LAVRAC N, et al. Stream-based active learning for sentiment analysis in the financial domain[J]. Information Sciences, 2014, 285(1):181-203. [20] BOUGUELIA M R, BELAÏD Y, BELAÏD A. An adaptive streaming active learning strategy based on instance weighting[J]. Pattern Recognition Letters, 2015, 70:38-44. [21] SILVA C, ANTUNES M, COSTA J, et al. Active manifold learning with twitter big data[J]. Procedia Computer Science, 2015, 53:208-215. [22] WANG X Z, ZHAI J H. Learning with Uncertainty[M]. Boca Raton:CRC Press, 2016. [23] 翟俊海. 数据约简——样例约简与属性约简[M]. 北京:科学出版社, 2015. (ZHAI J H. Data Reduction-Instance Reduction and Attribute Reduction[M]. Beijing:Science Press, 2015.) [24] DEAN J, GHEMAWAT S. MapReduce:simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1):107-113. [25] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of the 2004 IEEE International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2004:985-990. [26] YU H L, SUN C Y, YANG W K, et al. AL-ELM:one uncertainty-based active learning algorithm using extreme learning machine[J]. Neurocomputing, 2015, 166:140-150. |