[1] WU J, SHEN H, LI Y D, et al. Learning a hybrid similarity measure for image retrieval[J]. Pattern Recognition, 2013, 46(11):2927-2939. [2] 臧淼. 图像自动标注关键技术研究[D].北京:北京邮电大学,2017:3-20.(ZANG M. Research on key technology of image automatic annotation[D].Beijing:Beijing University of Posts and Telecommunications,2017:3-20.) [3] GUILLAUMIN M, MENSINK T, VERBEEK J, et al. TagProp:Discriminative metric learning in nearest neighbor models for image auto-annotation[C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2009:309-316. [4] JEON J, LAVRENKO V, MANMATHA R. Automatic image annotation and retrieval using cross-media relevance models[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2003:119-126. [5] MORAN S, LAVRENKO V. A sparse kernel relevance model for automatic image annotation[J].Journal of Multimedia Information Retrieval,2014, 3(4):209-229. [6] MAKADIA A, PAVLOVIC V, KUMAR S. Baselines for image annotation[J]. International Journal of Computer Vision, 2010, 90(1):88-105. [7] VERMA Y,JAWAHAR C V. Image annotation using metric learning in semantic neighborhoods[M]//ECCV'12:Proceedings of the 12th European Conference on Computer Vision. Berlin:Springer, 2012:836-849. [8] VERMA Y, JAWAHAR C V. Image annotation by propagating labels from semantic neighborhoods[J]. International Journal of Computer Vision, 2017, 121(1):126-148. [9] KASHANI M M, AMIRI S H. Leveraging deep learning representation for search-based image annotation[C]//Proceedings of 2017 Artificial Intelligence and Signal Processing Conference. Piscataway, NJ:IEEE, 2017:156-161. [10] 黎健成,袁春,宋友.基于卷积神经网络的多标签图像自动标注[J].计算机科学, 2016, 43(7):41-45.(LI J C,YUAN C,SONG Y. Multi-label image annotation based on convolutional neural network[J]. Computer Science, 2016, 43(7):41-45.) [11] HOA M L, NGUYEN T, DUNG N. Fully automated multi-label image annotation by convolution neural network and adaptive thresholding[C]//Proceedings of the 7th Symposium on Information and Communication Technology. New York:ACM, 2016:323-330. [12] MURTHY V N, MAJI S, MANMATHA R. Automatic image annotation using deep learning representations[C]//Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. New York:ACM, 2015:603-606. [13] 高耀东,侯凌燕,杨大利.基于多标签学习的卷积神经网络的图像标注方法[J].计算机应用, 2017, 37(1):228-232.(GAO Y D,HOU L Y,YANG D L. Automatic image annotation method using multi-label learning convolutional neural network[J].Journal of Computer Applications,2017, 37(1):228-232.) [14] KALAYEH M M, IDREES H,SHAH M. NMF-KNN:Image annotation using weighted multi-view non-negative matrix factorization[C]//Proceedings of the 27th IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:184-191. [15] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10):1345-1359. [16] 庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015, 26(1): 26-39.(ZHUANG F Z,LUO P,HE Q, et al. Survey on transfer learning research[J]. Journal of Software,2015, 26(1):26-39.) [17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of 26th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1097-1105. [18] 宋光慧.基于迁移学习与深度卷积特征的图像标注方法研究[D].杭州: 浙江大学, 2017: 56-61.(SONG G H. Image annotation method based on transfer learning and deep convolutional feature[D].Hangzhou: Zhejiang University,2017: 56-61.) |