[1] CREMONESI P, TRIPODI A, TURRIN R. Cross-domain recommender systems[C]//Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops. Piscataway, NJ:IEEE, 2012:496-503. [2] CANTADOR I, FERNANDEZ-TOBIAS I, BERKOVSKY S, et al. Cross-domain recommender systems[M]//Recommender Systems Handbook. Berlin:Springer, 2015:919-959. [3] LI B, YANG Q, XUE X. Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco, CA:Morgan Kaufmann Publishers Inc., 2009:2052-2057. [4] 欧辉思, 曹健. 面向跨领域的推荐系统研究现状与趋势[J]. 小型微型计算机系统, 2016, 37(7):1411-1416.(OU H S, CAO J. Survey on research and progress of cross-domain recommendation[J]. Journal of Chinese Computer Systems, 2016, 37(7):1411-1416). [5] STECK H. Evaluation of recommendations:rating-prediction and ranking[C]//Proceedings of the 7th ACM Conference on Recommender Systems. New York:ACM, 2013:213-220. [6] CREMONESI P, KOREN Y, TURRIN R. Performance of recommender algorithms on top-N recommendation tasks[C]//Proceedings of the 4th ACM Conference on Recommender Systems. New York:ACM, 2010:39-46. [7] XIA N, KARPIS G. Sparse linear methods with side information for top-N recommendations[C]//Proceedings of the 6th ACM Conference on Recommender Systems. New York:ACM, 2012:155-162. [8] LI B, YANG Q, XUE X. Transfer learning for collaborative filtering via a rating-matrix generative model[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 617-624. [9] 王欣. 基于迁移学习的跨领域推荐的方法研究[D]. 杭州: 杭州电子科技大学, 2015: 22-28.(WAN X. Research on methods of cross-domain recommendation with transfer learning[D]. Hangzhou: Hangzhou Dianzi University, 2015: 22-28.) [10] RAFAILIDIS D, CRESTANI F. Top-n recommendation via joint cross-domain user clustering and similarity learning[C]// ECML PKDD 2016: Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2016: 426-441. [11] MIRBAKHSH N, LING C X. Improving top-n recommendation for cold-start users via cross-domain information[J]. ACM Transactions on Knowledge Discovery from Data, 2015, 9(4): Article No. 33. [12] 朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2):163-175.(ZHU Y X, LYU L Y. Evaluation metrics for recommender systems[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(2):163-175). |