Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (8): 2578-2585.DOI: 10.11772/j.issn.1001-9081.2021061072
• Multimedia computing and computer simulation • Previous Articles Next Articles
Chengxia XU1, Qing YAN1, Teng LI1,2, Kaichao MIAO3()
Received:
2021-06-24
Revised:
2022-01-01
Accepted:
2022-01-20
Online:
2022-03-02
Published:
2022-08-10
Contact:
Kaichao MIAO
About author:
XU Chengxia, born in 1995, M. S. candidate. Her research interests include image denoising based on deep learning.通讯作者:
苗开超
作者简介:
徐成霞(1995—),女,安徽合肥人,硕士研究生,主要研究方向:基于深度学习的图像去噪;CLC Number:
Chengxia XU, Qing YAN, Teng LI, Kaichao MIAO. De-raining algorithm based on joint attention mechanism for single image[J]. Journal of Computer Applications, 2022, 42(8): 2578-2585.
徐成霞, 阎庆, 李腾, 苗开超. 基于联合注意力机制的单幅图像去雨算法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2578-2585.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061072
算法 | SSIM/VIFP/PSNR | ||
---|---|---|---|
Rain100H | DID-MDN | SPANet-Data | |
原始雨图 | 0.357/0.172/12.13 | 0.706/0.363/22.16 | 0.904/0.753/32.63 |
PReNet[ | 0.858/0.679/26.77 | 0.945/0.861/32.44 | 0.937/0.810/35.60 |
SPANet[ | 0.847/0.702/27.34 | 0.947/0.847/32.06 | 0.975/0.826/36.83 |
Syn2Real[ | 0.860/0.715/28.77 | 0.947/0.861/34.33 | 0.962/0.817/36.79 |
本文算法 | 0.856/0.715/27.20 | 0.951/0.859/32.15 | 0.975/0.838/36.97 |
Tab. 1 Comparison of results of different de-raining algorithms
算法 | SSIM/VIFP/PSNR | ||
---|---|---|---|
Rain100H | DID-MDN | SPANet-Data | |
原始雨图 | 0.357/0.172/12.13 | 0.706/0.363/22.16 | 0.904/0.753/32.63 |
PReNet[ | 0.858/0.679/26.77 | 0.945/0.861/32.44 | 0.937/0.810/35.60 |
SPANet[ | 0.847/0.702/27.34 | 0.947/0.847/32.06 | 0.975/0.826/36.83 |
Syn2Real[ | 0.860/0.715/28.77 | 0.947/0.861/34.33 | 0.962/0.817/36.79 |
本文算法 | 0.856/0.715/27.20 | 0.951/0.859/32.15 | 0.975/0.838/36.97 |
测试数据集 | SSIM/VIFP/PSNR | |||
---|---|---|---|---|
原始雨图 | Rain100H&100L | DID-MDN | MSR-Synthetic | |
Rain100H | 0.357/0.172/13.13 | 0.917/0.863/29.15 | 0.731/0.761/24.71 | 0.786/0.764/26.85 |
Rain100L | 0.713/0.402/23.64 | 0.921/0.865/29.34 | 0.911/0.806/27.61 | 0.913/0.807/29.37 |
DID-MDN | 0.706/0.363/22.16 | 0.844/0.841/26.33 | 0.947/0.860/33.87 | 0.958/0.860/34.25 |
MSR-Synthetic | 0.762/0.397/23.07 | 0.908/0.843/26.97 | 0.944/0.861/33.63 | 0.960/0.861/36.65 |
Tab. 2 Cross-validation results on synthetic rain data
测试数据集 | SSIM/VIFP/PSNR | |||
---|---|---|---|---|
原始雨图 | Rain100H&100L | DID-MDN | MSR-Synthetic | |
Rain100H | 0.357/0.172/13.13 | 0.917/0.863/29.15 | 0.731/0.761/24.71 | 0.786/0.764/26.85 |
Rain100L | 0.713/0.402/23.64 | 0.921/0.865/29.34 | 0.911/0.806/27.61 | 0.913/0.807/29.37 |
DID-MDN | 0.706/0.363/22.16 | 0.844/0.841/26.33 | 0.947/0.860/33.87 | 0.958/0.860/34.25 |
MSR-Synthetic | 0.762/0.397/23.07 | 0.908/0.843/26.97 | 0.944/0.861/33.63 | 0.960/0.861/36.65 |
测试数据集 | SSIM/VIFP/PSNR | ||
---|---|---|---|
原图 | SPANet-Data | MSR-Real | |
SPANet-Data | 0.904/0.753/32.63 | 0.986/0.878/38.06 | 0.985/0.875/37.87 |
MSR-Real | 0.910/0.802/32.83 | 0.985/0.880/37.81 | 0.988/0.881/38.90 |
Tab. 3 Cross-validation results on real rain data
测试数据集 | SSIM/VIFP/PSNR | ||
---|---|---|---|
原图 | SPANet-Data | MSR-Real | |
SPANet-Data | 0.904/0.753/32.63 | 0.986/0.878/38.06 | 0.985/0.875/37.87 |
MSR-Real | 0.910/0.802/32.83 | 0.985/0.880/37.81 | 0.988/0.881/38.90 |
模块 | PSNR/dB | SSIM | 运行时间/s | |
---|---|---|---|---|
512×512 | 1 024×1 024 | |||
37.23 | 0.985 | 0.103 | 0.341 | |
37.43 | 0.985 | 0.126 | 0.423 | |
37.31 | 0.984 | 0.117 | 0.351 | |
38.90 | 0.988 | 0.132 | 0.441 |
Tab. 4 Network module analysis
模块 | PSNR/dB | SSIM | 运行时间/s | |
---|---|---|---|---|
512×512 | 1 024×1 024 | |||
37.23 | 0.985 | 0.103 | 0.341 | |
37.43 | 0.985 | 0.126 | 0.423 | |
37.31 | 0.984 | 0.117 | 0.351 | |
38.90 | 0.988 | 0.132 | 0.441 |
1 | 何新宇,张晓龙.基于深度神经网络的肺炎图像识别模型[J].计算机应用, 2019, 39(6): 1680-1684. 10.11772/j.issn.1001-9081.2018102112 |
HE X Y, ZHANG X L. Pneumonia image recognition model based on deep neural network[J]. Journal of Computer Applications, 2019, 39(6): 1680-1684. 10.11772/j.issn.1001-9081.2018102112 | |
2 | ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14816-14826. 10.1109/cvpr46437.2021.01458 |
3 | FU X Y, HUANG J B, ZENG D L, et al. Removing rain from single images via a deep detail network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1715-1723. 10.1109/cvpr.2017.186 |
4 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
5 | ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 695-704. 10.1109/cvpr.2018.00079 |
6 | WANG T Y, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12262-12271. 10.1109/cvpr.2019.01255 |
7 | YANG W H, TAN R T, FENG J S, et al. Deep joint rain detection and removal from a single image [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1685-1694. 10.1109/cvpr.2017.183 |
8 | ZHANG H, SINDAGI H, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 3943-3956. 10.1109/tcsvt.2019.2920407 |
9 | ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. 10.1109/tii.2019.2943898 |
10 | YU F, KOLTUN V, FUNKHOUSER T. Dilated residual networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 636-644. 10.1109/cvpr.2017.75 |
11 | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. 10.1109/cvpr.2018.00813 |
12 | JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2017-2025. 10.1007/s11263-015-0823-z |
13 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
14 | LE Q V, JAITLY N, HINTON G E. A simple way to initialize recurrent networks of rectified linear units[EB/OL]. (2015-04-07) [2021-04-10]. . |
15 | ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2015-02-19) [2021-04-10]. . |
16 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 10.1109/tip.2003.819861 |
17 | ZHANG L, ZHANG L, MOU X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. 10.1109/tip.2011.2109730 |
18 | SHEIKH H R, BOVIK A C, DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128. 10.1109/tip.2005.859389 |
19 | REN D W, ZOU W M, HU Q H, et al. Progressive image deraining networks: a better and simpler baseline [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3932-3941. 10.1109/cvpr.2019.00406 |
20 | YASARLA R, SINDAGI V A, PATEL V M. Syn2Real transfer learning for image deraining using Gaussian processes [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2723-2733. 10.1109/cvpr42600.2020.00280 |
[1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[2] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[6] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[7] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[8] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[9] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[10] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||