Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (4): 1021-1028.DOI: 10.11772/j.issn.1001-9081.2022030460
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Yongbing GAO(), Juntian GAO, Rong MA, Lidong YANG
Received:
2022-04-11
Revised:
2022-06-12
Accepted:
2022-06-22
Online:
2023-04-11
Published:
2023-04-10
Contact:
Yongbing GAO
About author:
GAO Juntian, born in 1996, M. S. candidate. His research interests include automatic generation of personalized text.Supported by:
通讯作者:
高永兵
作者简介:
高军甜(1996—),男,山西吕梁人,硕士研究生,主要研究方向:个性化文本自动生成;基金资助:
CLC Number:
Yongbing GAO, Juntian GAO, Rong MA, Lidong YANG. User granularity-level personalized social text generation model[J]. Journal of Computer Applications, 2023, 43(4): 1021-1028.
高永兵, 高军甜, 马蓉, 杨立东. 用户粒度级的个性化社交文本生成模型[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1021-1028.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022030460
参数 | 值 | 参数 | 值 |
---|---|---|---|
initializer_range | 0.02 | n_head | 12 |
layer_norm_epsilon | 10-5 | n_layer | 12 |
n_ctx | 1 024 | n_positions | 1 024 |
n_embd | 768 |
Tab. 1 GPT2-Chinese model parameters
参数 | 值 | 参数 | 值 |
---|---|---|---|
initializer_range | 0.02 | n_head | 12 |
layer_norm_epsilon | 10-5 | n_layer | 12 |
n_ctx | 1 024 | n_positions | 1 024 |
n_embd | 768 |
模型 | 流畅度 | 个性化 | 一致性 | |||
---|---|---|---|---|---|---|
GPT2-Chinese | 8.38 | |||||
大五人格模型 | 8.03 | 6.18 | ||||
社交意图生成模型 | 8.11 | 7.02 | ||||
本文 模型 | Decoder Output | 平均融合 | 1/4 data | 6.21 | 6.61 | |
1/2 data | 6.94 | 6.76 | ||||
All data | 7.26 | 6.80 | 0.71 | |||
动态加权 融合 | 1/4 data | 6.26 | 6.67 | |||
1/2 data | 7.94 | 7.72 | ||||
All data | 8.44 | 8.18 | 0.68 | |||
Alignment module | 8.41 | 9.02 | 0.77 |
Tab. 2 Experimental results of different models
模型 | 流畅度 | 个性化 | 一致性 | |||
---|---|---|---|---|---|---|
GPT2-Chinese | 8.38 | |||||
大五人格模型 | 8.03 | 6.18 | ||||
社交意图生成模型 | 8.11 | 7.02 | ||||
本文 模型 | Decoder Output | 平均融合 | 1/4 data | 6.21 | 6.61 | |
1/2 data | 6.94 | 6.76 | ||||
All data | 7.26 | 6.80 | 0.71 | |||
动态加权 融合 | 1/4 data | 6.26 | 6.67 | |||
1/2 data | 7.94 | 7.72 | ||||
All data | 8.44 | 8.18 | 0.68 | |||
Alignment module | 8.41 | 9.02 | 0.77 |
1 | ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2):179-211. 10.1207/s15516709cog1402_1 |
2 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2016-05-19) [2022-02-15].. 10.1017/9781108608480.003 |
3 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing System - Volume 2. Cambridge: MIT Press, 2014:2672-2680. |
4 | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2022-12-10) [2023-01-15].. 10.1561/2200000056 |
5 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. |
6 | 王姿雯. 基于深度学习的多条件个性化文本生成[D]. 北京:北京邮电大学, 2019:1-68. |
WANG Z W. Multi-conditional generation of personalized texts based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2019:1-68. | |
7 | 高永兵,黎预璇,高军甜,等. 基于用户意图的微博文本生成技术研究[J]. 计算机工程, 2022, 48(1):119-126. 10.19678/j.issn.1000-3428.0060079 |
GAO Y B, LI Y X, GAO J T, et al. Research on Weibo text generation technology based on user intention[J]. Computer Engineering, 2022, 48(1):119-126. 10.19678/j.issn.1000-3428.0060079 | |
8 | 韩萍,孙佳慧,方澄,等. 基于情感融合和多维自注意力机制的微博文本情感分析[J]. 计算机应用, 2019, 39(S1):75-78. |
HAN P, SUN J H, FANG C, et al. Micro-blog sentiment analysis based on emotional fusion and multi-dimensional self-attention mechanism[J]. Journal of Computer Applications, 2019, 39(S1):75-78. | |
9 | 李艳红,赵宏伟,王素格,等. 面向微博文本流的负面情感突发话题检测[J]. 计算机应用, 2020, 40(12):3458-3464. |
LI Y H, ZHAO H W, WANG S G, et al. Detection of negative emotion burst topic in microblog text stream[J]. Journal of Computer Applications, 2020, 40(12):3458-3464. | |
10 | 徐建民,刘明艳,王苗. 基于用户扩展兴趣的微博推荐方法[J]. 计算机应用研究, 2019, 36(6):1652-1655. |
XU J M, LIU M Y, WANG M. Microblog recommendation method based on extended interest of users[J]. Application Research of Computers, 2019, 36(6):1652-1655. | |
11 | 周炜翔,张雯,杨博,等. 面向微博用户的个性化推荐算法研究[J]. 计算机工程, 2020, 46(10):60-66, 73. |
ZHOU W X, ZHANG W, YANG B, et al. Research on personalized recommendation algorithm for microblog users[J]. Computer Engineering, 2020, 46(10):60-66, 73. | |
12 | 寇菲菲,杜军平,石岩松,等. 面向搜索的微博短文本语义建模方法[J]. 计算机学报, 2020, 43(5):781-795. 10.11897/SP.J.1016.2020.00781 |
KOU F F, DU J P, SHI Y S, et al. Microblog short text semantic modeling method for search[J]. Chinese Journal of Computers, 2020, 43(5):781-795. 10.11897/SP.J.1016.2020.00781 | |
13 | SONG H Y, WANG Y, ZHANG K Y, et al. BoB: BERT over BERT for training persona-based dialogue models from limited personalized data[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2021:167-177. 10.18653/v1/2021.acl-long.14 |
14 | DEVLIN J, CHANG M W, KENTON L, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019:4171-4186. 10.18653/v1/n18-2 |
15 | DU Z Y. GPT2-Chinese[EB/OL]. [2022-02-15].. |
16 | RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[EB/OL]. [2022-02-15].. |
17 | RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text Transformer[J]. Journal of Machine Learning Research, 2020, 21:1-67. |
18 | KESKAR N S, McCANN B, VARSHNEY L R, et al. CTRL: a conditional transformer language model for controllable generation[EB/OL]. (2019-09-20) [2022-02-15].. |
19 | DATHATHRI S, MADOTTO A, LAN J, et al. Plug and play language models: a simple approach to controlled text generation[EB/OL]. (2020-03-03) [2022-02-15].. |
20 | CHAN A, ONG Y S, PUNG B, et al. CoCon: a self-supervised approach for controlled text generation[EB/OL]. (2022-06-10) [2023-01-15].. |
21 | LI J W, GALLEY M, BROCKETT C, et al. A persona-based neural conversation model[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2016:994-1003. 10.18653/v1/p16-1094 |
22 | HERZIG J, SHMUELI-SCHEUER M, SANDBANK T, et al. Neural response generation for customer service based on personality traits[C]// Proceedings of the 10th International Conference on Natural Language Generation. Stroudsburg, PA: ACL, 2017:252-256. 10.18653/v1/w17-3541 |
23 | ZHENG Y H, CHEN G Y, HUANG M L, et al. Personalized dialogue generation with diversified traits[EB/OL]. (2020-01-02) [2022-02-15].. |
24 | ZHENG Y H, ZHANG R S, MAO X X, et al. A pre-training based personalized dialogue generation model with persona-sparse data[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020:9693-9700. 10.1609/aaai.v34i05.6518 |
25 | CAO Y, BI W, FANG M, et al. Pretrained language models for dialogue generation with multiple input sources[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, PA: ACL, 2020:909-917. 10.18653/v1/2020.findings-emnlp.81 |
26 | FAN A, LEWIS M, DAUPHIN Y. Hierarchical neural story generation[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2018:889-898. 10.18653/v1/p18-1082 |
[1] | Qi SHUAI, Hairui WANG, Guifu ZHU. Chinese story ending generation model based on bidirectional contrastive training [J]. Journal of Computer Applications, 2024, 44(9): 2683-2688. |
[2] | Xianglan WU, Yang XIAO, Mengying LIU, Mingming LIU. Text-to-SQL model based on semantic enhanced schema linking [J]. Journal of Computer Applications, 2024, 44(9): 2689-2695. |
[3] | Chenyang LI, Long ZHANG, Qiusheng ZHENG, Shaohua QIAN. Multivariate controllable text generation based on diffusion sequences [J]. Journal of Computer Applications, 2024, 44(8): 2414-2420. |
[4] | Chao WEI, Yanping CHEN, Kai WANG, Yongbin QIN, Ruizhang HUANG. Relation extraction method based on mask prompt and gated memory network calibration [J]. Journal of Computer Applications, 2024, 44(6): 1713-1719. |
[5] | Linhao LI, Xiaoqian ZHANG, Yao DONG, Xu WANG, Yongfeng DONG. Knowledge tracing based on personalized learning and deep refinement [J]. Journal of Computer Applications, 2024, 44(10): 3039-3046. |
[6] | Menglin HUANG, Lei DUAN, Yuanhao ZHANG, Peiyan WANG, Renhao LI. Prompt learning based unsupervised relation extraction model [J]. Journal of Computer Applications, 2023, 43(7): 2010-2016. |
[7] | Liang XU, Chun ZHANG, Ning ZHANG, Xuetao TIAN. Zero-shot relation extraction model via multi-template fusion in Prompt [J]. Journal of Computer Applications, 2023, 43(12): 3668-3675. |
[8] | Haifeng ZHANG, Cheng ZENG, Lie PAN, Rusong HAO, Chaodong WEN, Peng HE. News topic text classification method based on BERT and feature projection network [J]. Journal of Computer Applications, 2022, 42(4): 1116-1124. |
[9] | SUN Heli, SUN Yuzhu, ZHANG Xiaoyun. Event description generation based on generative adversarial network [J]. Journal of Computer Applications, 2021, 41(5): 1256-1261. |
[10] | LI Xueqing, WANG Shi, WANG Zhujun, ZHU Junwu. Summarization of natural language generation [J]. Journal of Computer Applications, 2021, 41(5): 1227-1235. |
[11] | Zhichao LI, Tohti TURDI, Hamdulla ASKAR. Answer selection model based on dynamic attention and multi-perspective matching [J]. Journal of Computer Applications, 2021, 41(11): 3156-3163. |
[12] | TAN Jinyuan, DIAO Yufeng, QI Ruihua, LIN Hongfei. Automatic summary generation of Chinese news text based on BERT-PGN model [J]. Journal of Computer Applications, 2021, 41(1): 127-132. |
[13] | Yang LI, Wei ZHANG, Chen PENG. Target-dependent method for authorship attribution [J]. Journal of Computer Applications, 2020, 40(2): 473-478. |
[14] | Meishu ZHANG, Yabin XU. Personalized privacy protection method for data with multiple numerical sensitive attributes [J]. Journal of Computer Applications, 2020, 40(2): 491-496. |
[15] | MA Fangfang, LIU Shubo, XIONG Xingxing, NIU Xiaoguang. Privacy protection based on local differential privacy for numerical sensitive data of wearable devices [J]. Journal of Computer Applications, 2019, 39(7): 1985-1990. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||