[1] BORJI A, CHENG M M, JIANG H Z, et al. Salient object detection:a benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12):5706. [2] GAO Y, WANG M, TAO D C, et al. 3-D object retrieval and recognition with hypergraph analysis[J]. IEEE Transactions on Image Processing, 2012, 21(9):4290-4303. [3] HADIZADEH H, BAJIC I V. Saliency-aware video compression[J]. IEEE Transactions on Image Processing, 2014, 23(1):19-33. [4] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2009:1597-1604. [5] ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:2814-2821. [6] LI X, LU H, ZHANG L, et al. Saliency detection via dense and sparse reconstruction[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2013:2976-2983. [7] JIANG H Z, WANG J D, YUAN Z J, et al. Salient object detection:a discriminative regional feature integration approach[J]. International Journal of Computer Vision, 2014, 123(2):251-268. [8] VIG E, DORR M, COX D. Large-scale optimization of hierarchical features for saliency prediction in natural images[C]//Proceedings of the 2014 Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:2798-2805. [9] ZHAO R, OUYANG W, LI H, et al. Saliency detection by multi-context deep learning[C]//Proceedings of the 2015 Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:1265-1274. [10] LIU N, HAN J W, ZHANG D W, et al. Predicting eye fixations using convolutional neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:362-370. [11] LI G B, YU Y Z. Visual saliency based on multiscale deep features[C]//Proceedings of the 2015 IEEE Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:5455-5463. [12] LI X, ZHAO L M, WEI L N, et al. DeepSaliency:multi-task deep neural network model for salient object detection[J]. IEEE Transactions on Image Processing, 2016, 25(8):3919-3930. [13] LEE G, TAI Y W, KIM J. Deep saliency with encoded low level distance map and high level features[C]//Proceedings of the 2016 IEEE Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:660-668. [14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. ArXiv Preprint, 2014, 2014:1409.1556. [15] 李啸宇,张秋菊.融合局部纹理特征的颗粒图像SLIC超像素分割方法[J].食品与机械,2016,32(12):31-34.(LI X Y, ZHANG Q J. A SLIC-based superpixel segmentation method by using local texture feature for granular image[J]. Food and Machinery, 2016, 32(12):31-34.) [16] 刘彤,黄修添,马建设,等.基于完全联系的条件随机场的图像标注[J].计算机应用,2017,37(10):2841-2846.(LIU T, HUANG X T, MA J S, et al. Image labeling based on fully-connected conditional random field[J]. Journal of Computer Applications, 2017, 37(10):2841-2846.) [17] HOU Q, CHENG M M, HU X, et al. Deeply supervised salient object detection with short connections[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:5300-5309. [18] JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe:Convolutional architecture for fast feature embedding[C]//Proceedings of the 2014 ACM Conference on Multimedia. New York:ACM, 2014:675-678. |