[1] AGRAWL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York:ACM, 1993:207-216. [2] HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM 2000:1-12. [3] DING Z, WEI Q, DING X. An improved FP-growth algorithm based on Compound single linked list[C]//Proceedings of the 2009 Second International Conference on Information and Computing Science. Washington, DC:IEEE Computer Society, 2009, 1:351-353. [4] HAO J, XU H. An improved algorithm for frequency itemsets mining[C]//Proceedings of the 2017 Fifth International Conference on Advanced Cloud and Big Data. Washington, DC:IEEE Computer Society, 2017:314-317. [5] 李也白,唐辉,张淳,等. 基于改进的FP-tree的频繁模式挖掘算法[J]. 计算机应用,2011,31(1):101-103.(LI Y B, TANG H, ZHANG C, el al. Frequent pattern mining algorithm based on improve FP-tree[J]. Journal of Computer Applications, 2011, 31(1):101-103.) [6] 李校林,杜托,刘彪.基于B-list的快速频繁模式挖掘算法[J].计算机应用,2017,37(8):2357-2361,2367. (LI X L,DU T,LIU B. Fast algorithm for mining frequent patterns based on B-list[J]. Journal of Computer Applications, 2017, 37(8):2357-2361, 2367.) [7] 马丽生,姚光顺,杨传健.基于改进的FP-tree最大频繁项目集挖掘算法[J].计算机应用,2012,32(2):326-329.(MA L S, YAO G S, YANG C J. Mining algorithm for maximal frequent itemsets based on improved FP-tree[J]. Journal of Computer Applications, 2012, 32(2):326-329.) [8] 宁慧,王素红,催立刚,等. 基于改进的FP-tree最大频繁模式挖掘算法[J]. 应用科技,2016,43(2):37-43.(NING H, WANG S H, CUI L G, et al. An algorithm for mining maximal frequent patterns based on improved FP-tree[J]. Applied Science and Technology,2016,43(2):37-43.) [9] 赵阳,吴廖丹. 一种自底向上的最大频繁项集挖掘方法[J]. 计算机技术与发展,2017,27(8):57-60.(ZHAO Y,WU L D. A bottom-up method for mining maximum frequent itemsets[J]. Computer Technology and Development, 2017, 27(8):57-60.) [10] LI H, WANG Y, ZHAN D, el al. PFP:parallel FP-growth for query recommendation[C]//Proceedings of the 2008 ACM Conference on Recommender Systems. New York:ACM, 2008:107-114. [11] WEI X, MA Y, ZHANG F, el al. Incremental FP-Growth mining strategy for dynamic threshold value and database based on MapReduce[C]//Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Wori in Design. Piscataway, NJ:IEEE, 2014:271-276. [12] LEUNG C K-S, KHAN Q I, HOQUE T. CANTree:a tree structure for efficient incremental mining of frequent patterns[C]//Proceedings of the Fifth IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2005:274-281. [13] 邹力鹍,张其善. 基于CAN-树的高效关联规则增量挖掘算法[J]. 计算机工程,2008,34(3):29-31.(ZOU L K, ZHANG Q S. Efficient incremental association rules mining algorithm based on CAN-tree[J]. Computer Engineering, 2008, 34(3):29-31.) [14] 陈刚,闫英战,刘秉权. 一种基于CAN-tree快速构建算法[J]. 微电子学与计算机,2014,31(1):76-82.(CHEN G, YAN Y Z, LIU B Q. A fast construction algorithm based on CAN-tree[J]. Microelectronics & Computer, 2014, 32(1):76-82.) [15] TAN P M, STEINBACH M, KUMAR V. 数据挖掘导论(完整版)[M]. 范明,等译. 北京:人民邮电出版社,2017:225-228.(TAN P M, STEINBACH M, KUMAR V. Writing Introduction to Data Mining[M]. FAN M, translated. Beijing:Post & Telecom Press, 2017:225-228.) |