Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 391-397.DOI: 10.11772/j.issn.1001-9081.2021122190
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Yaling XUN1, Linqing WANG1, Jianghui CAI1,2(), Haifeng YANG1
Received:
2021-12-29
Revised:
2022-05-30
Accepted:
2022-06-10
Online:
2022-06-30
Published:
2023-02-10
Contact:
Jianghui CAI
About author:
XUN Yaling, born in 1980, Ph. D., associate professor. Her research interests include data mining, parallel computing.Supported by:
通讯作者:
蔡江辉
作者简介:
荀亚玲(1980—),女,山西霍州人,副教授,博士,CCF会员,主要研究方向:数据挖掘、并行计算基金资助:
CLC Number:
Yaling XUN, Linqing WANG, Jianghui CAI, Haifeng YANG. Partial periodic pattern incremental mining of time series data based on multi-scale[J]. Journal of Computer Applications, 2023, 43(2): 391-397.
荀亚玲, 王林青, 蔡江辉, 杨海峰. 基于多尺度的时序数据部分周期模式增量挖掘[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 391-397.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122190
tid | ts | 模式 | tid | ts | 模式 |
---|---|---|---|---|---|
101 | 1 | a,b,e | 107 | 7 | c,e,h |
102 | 2 | c,g | 108 | 8 | a,c,d |
103 | 3 | a,b,c | 109 | 9 | a,b,g,h |
104 | 4 | a,b,h | 110 | 10 | c,d,e,f |
105 | 5 | a,b,e | 111 | 11 | a,b,c |
106 | 6 | a,e,f,g | 112 | 12 | a,b,c,d |
Tab. 1 Example of time series database
tid | ts | 模式 | tid | ts | 模式 |
---|---|---|---|---|---|
101 | 1 | a,b,e | 107 | 7 | c,e,h |
102 | 2 | c,g | 108 | 8 | a,c,d |
103 | 3 | a,b,c | 109 | 9 | a,b,g,h |
104 | 4 | a,b,h | 110 | 10 | c,d,e,f |
105 | 5 | a,b,e | 111 | 11 | a,b,c |
106 | 6 | a,e,f,g | 112 | 12 | a,b,c,d |
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,d,e |
102 | 2 | b,c |
103 | 3 | b,c,d,e |
Tab. 2 Scale dataset of dseason1
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,d,e |
102 | 2 | b,c |
103 | 3 | b,c,d,e |
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,c,d |
102 | 2 | a,b,d |
103 | 3 | b,c |
Tab. 3 Scale dataset of dseason2
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,c,d |
102 | 2 | a,b,d |
103 | 3 | b,c |
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,d,e |
102 | 2 | b,c,e |
103 | 3 | a,b,d |
Tab. 4 Scale dataset of dseason3
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,d,e |
102 | 2 | b,c,e |
103 | 3 | a,b,d |
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,c |
102 | 2 | b,c,d,e |
103 | 3 | a,b,e |
Tab. 5 Scale dataset of dseason4
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,c |
102 | 2 | b,c,d,e |
103 | 3 | a,b,e |
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,c,d |
102 | 2 | a,b,d,e |
103 | 3 | c,d,e |
Tab. 6 Scale dataset of dIncremental
tid | ts | 模式 |
---|---|---|
101 | 1 | a,b,c,d |
102 | 2 | a,b,d,e |
103 | 3 | c,d,e |
候选项目集 | m | ||||
---|---|---|---|---|---|
a | 3 | 2 | 2 | 2 | |
b | 4 | 3 | 3 | 3 | 3 |
c | 3 | 2 | 2 | 2 | |
d | 3 | 2 | 2 | 2 | |
e | 2 | 2 | 2 | ||
ab | 3 | 2 | 2 | 2 | |
ad | 2 | 2 | 2 | ||
bc | 3 | 2 | 2 | 2 | |
bd | 3 | 2 | 2 | 2 | |
be | 2 | 2 | 2 | ||
abd | 2 | 2 | 2 |
Tab. 7 Candidate itemset information
候选项目集 | m | ||||
---|---|---|---|---|---|
a | 3 | 2 | 2 | 2 | |
b | 4 | 3 | 3 | 3 | 3 |
c | 3 | 2 | 2 | 2 | |
d | 3 | 2 | 2 | 2 | |
e | 2 | 2 | 2 | ||
ab | 3 | 2 | 2 | 2 | |
ad | 2 | 2 | 2 | ||
bc | 3 | 2 | 2 | 2 | |
bd | 3 | 2 | 2 | 2 | |
be | 2 | 2 | 2 | ||
abd | 2 | 2 | 2 |
数据集 | 大小/MB | 平均长度 | 数据量 |
---|---|---|---|
T10I4D100K | 4.6 | 46.0 | 100 000 |
T15I1KD300K | 48.1 | 1 681.0 | 30 000 |
accidents | 7.2 | 135.2 | 70 000 |
Bible | 5.4 | 153.0 | 36 369 |
Tab. 8 Parameters of datasets
数据集 | 大小/MB | 平均长度 | 数据量 |
---|---|---|---|
T10I4D100K | 4.6 | 46.0 | 100 000 |
T15I1KD300K | 48.1 | 1 681.0 | 30 000 |
accidents | 7.2 | 135.2 | 70 000 |
Bible | 5.4 | 153.0 | 36 369 |
尺度大小 | 值 | 尺度大小 | 值 |
---|---|---|---|
SIZE1 | 10 000 | SIZE3 | 1 000 |
SIZE2 | 5 000 | SIZE4 | 500 |
Tab. 9 Size division of datasets
尺度大小 | 值 | 尺度大小 | 值 |
---|---|---|---|
SIZE1 | 10 000 | SIZE3 | 1 000 |
SIZE2 | 5 000 | SIZE4 | 500 |
1 | KIRAN R U, SHANG H C, TOYODA M, et al. Discovering partial periodic itemsets in temporal databases[C]// Proceedings of the 29th International Conference on Scientific and Statistical Database Management. New York: ACM, 2017: No.30. 10.1145/3085504.3085535 |
2 | LIU Z S, MA Y M, ZHENG H H, et al. Human resource recommendation algorithm based on improved frequent itemset mining[J]. Future Generation Computer Systems, 2022, 126: 284-288. 10.1016/j.future.2021.08.017 |
3 | MIRBAGHERI S M, HAMILTON H J. Mining high utility patterns in interval-based event sequences[J]. Data and Knowledge Engineering, 2021, 135: No.101924. 10.1016/j.datak.2021.101924 |
4 | WU Y X, LEI R, LI Y, et al. HAOP-Miner: self-adaptive high-average utility one-off sequential pattern mining[J]. Expert Systems with Applications, 2021, 184: No.115449. 10.1016/j.eswa.2021.115449 |
5 | TANBEER S K, AHMED C F, JEONG B S, et al. Discovering periodic-frequent patterns in transactional databases[C]// Proceedings of the 2009 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 5476. Berlin: Springer, 2009: 242-253. |
6 | SHELENKOV A, KOROTKOV E. LEPSCAN — a web server for searching latent periodicity in DNA sequences[J]. Briefings in Bioinformatics, 2012, 13(2): 143-149. 10.1093/bib/bbr044 |
7 | KIRAN R U, KITSUREGAWA M, REDDY P K. Efficient discovery of periodic-frequent patterns in very large databases[J]. Journal of Systems and Software, 2016, 112: 110-121. 10.1016/j.jss.2015.10.035 |
8 | FOURNIER-VIGER P, LIN C W, DUONG Q H, et al. PFPM: discovering periodic frequent patterns with novel periodicity measures[C]// Proceedings of the 2nd Czech-China Scientific Conference. London: IntechOpen, 2017: 23-35. 10.5772/66780 |
9 | KIRAN R U, KITSUREGAWA M. Discovering quasi-periodic-frequent patterns in transactional databases[C]// Proceedings of the 2013 International Conference on Big Data Analytics, LNCS 8302. Cham: Springer, 2013: 97-115. |
10 | KIRAN R U, VENKATESH J N, FOURNIER-VIGER P, et al. Discovering periodic patterns in non-uniform temporal databases[C]// Proceedings of the 2017 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 10235. Cham: Springer, 2017: 604-617. |
11 | SAIDEEP C, KIRAN R U, ZETTSU K, et al. Parallel mining of partial periodic itemsets in big data[C]// Proceedings of the 2020 International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, LNCS 12144. Cham: Springer, 2020: 807-819. |
12 | LIKHITHA P, RAVIKUMAR P, KIRAN R U, et al. Discovering closed periodic-frequent patterns in very large temporal databases[C]// Proceedings of the 2020 IEEE International Conference on Big Data. Piscataway: IEEE, 2020: 4700-4709. 10.1109/bigdata50022.2020.9378215 |
13 | ARYABARZAN N, MINAEI-BIDGOLI B. NEclatClosed: a vertical algorithm for mining frequent closed itemsets[J]. Expert Systems with Applications, 2021, 174: No.114738. 10.1016/j.eswa.2021.114738 |
14 | CAI S H, HUANG R B, CHEN J F, et al. An efficient outlier detection method for data streams based on closed frequent patterns by considering anti-monotonic constraints[J]. Information Sciences, 2021, 555: 125-146. 10.1016/j.ins.2020.12.050 |
15 | HACKMAN A, HUANG Y, TSENG V S. Mining trending high utility itemsets from temporal transaction databases[C]// Proceedings of the 2018 International Conference on Database and Expert Systems Applications, LNCS 11030. Cham: Springer, 2018: 461-470. |
16 | KANG R, WANG C, WANG P, et al. Matching consecutive subpatterns over streaming time series[C]// Proceedings of the 2018 Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, LNCS 10988. Cham: Springer, 2018: 90-105. |
17 | UPADHYAY P, PANDEY M K, KOHLI N. Periodic pattern mining from spatio-temporal database using novel global pollination artificial fish swarm optimizer-based clustering and modified FP tree[J]. Soft Computing, 2021, 25(6): 4327-4344. 10.1007/s00500-020-05444-z |
18 | XUN Y L, CUI X H, ZHANG J F, et al. Incremental frequent itemsets mining based on frequent pattern tree and multi-scale[J]. Expert Systems with Applications, 2021, 163: No.113805. 10.1016/j.eswa.2020.113805 |
19 | JINDAL R, BORAH M D. A novel approach for mining frequent patterns from incremental data[J]. International Journal of Data Mining, Modelling and Management, 2016, 8(3): 244-264. 10.1504/ijdmmm.2016.079071 |
20 | HUYNH V Q P, KÜNG J, DANG T K. Incremental frequent itemsets mining with IPPC tree[C]// Proceedings of the 2017 International Conference on Database and Expert Systems Applications, LNCS 10438. Cham: Springer, 2017: 463-477. |
21 | BEAN B, SUN Y, MAGUIRE M. Interval-valued kriging for geostatistical mapping with imprecise inputs[J]. International Journal of Approximate Reasoning, 2022, 140: 31-51. 10.1016/j.ijar.2021.10.003 |
22 | NAKAMURA S, KIRAN R U, LIKHITHA P, et al. Efficient discovery of partial periodic-frequent patterns in temporal databases[C]// Proceedings of the 2021 International Conference on Database and Expert Systems Applications, LNCS 12923. Cham: Springer, 2021: 221-227. |
[1] | Yan RONG, Jiawen LIU, Xinlei LI. Adaptive hybrid network for affective computing in student classroom [J]. Journal of Computer Applications, 2024, 44(9): 2919-2930. |
[2] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[3] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[4] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[5] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
[6] | Sailong SHI, Zhiwen FANG. Gaze estimation model based on multi-scale aggregation and shared attention [J]. Journal of Computer Applications, 2024, 44(7): 2047-2054. |
[7] | Wei LI, Xiaorong ZHANG, Peng CHEN, Qing LI, Changqing ZHANG. Crowd counting algorithm with multi-scale fusion based on normal inverse Gamma distribution [J]. Journal of Computer Applications, 2024, 44(7): 2243-2249. |
[8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[9] | Hongtao SONG, Jiangsheng YU, Qilong HAN. Industrial multivariate time series data quality assessment method [J]. Journal of Computer Applications, 2024, 44(6): 1743-1750. |
[10] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. |
[11] | Xiaohui CHENG, Yuntian HUANG, Ruifang ZHANG. Lightweight infrared road scene detection model based on multiscale and weighted coordinate attention [J]. Journal of Computer Applications, 2024, 44(6): 1927-1934. |
[12] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[13] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
[14] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
[15] | Yaobin ZOU, Bin ZHANG. Automatic thresholding method guided by maximizing four-directional weighted Shannon entropy [J]. Journal of Computer Applications, 2024, 44(11): 3565-3573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||