[1] ROUSSEEUW P J, LEROY A M. Robust Regression and Outlier Detection[M]. New York:John Wiley & Sons, 2005:254-255. [2] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2015-08-09]. https://arxiv.org/pdf/1508.01991.pdf. [3] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//NIPS 2014:Proceedings of the 2014 Advances in Neural Information Processing Systems 27. Montréal:[s.n.], 2014:3104-3112. [4] 严宏,杨波,杨红雨.基于异方差高斯过程的时间序列数据离群点检测[J].计算机应用,2018,38(5):1346-1352.(YAN H, YANG B, YANG H Y. Outlier detection in time series data based on heteroscedastic Gaussian processes[J]. Journal of Computer Applications, 2018, 38(5):1346-1352.) [5] 陈斌,陈松灿,潘志松,等.异常检测综述[J].山东大学学报(工学版), 2009,39(6):13-23. (CHEN B, CHEN S C, PAN Z S. et al. Survey of outlier detection technologies[J]. Journal of Shandong University (Engineering Science), 2009, 39(6):13-23.) [6] HUANG T, ZHU Y, WU Y, et al. Anomaly detection and identification scheme for VM live migration in cloud infrastructure[J]. Future Generation Computer Systems, 2016, 56(C):736-745. [7] WANG T, LI Z. Outlier detection in high-dimensional regression model[J]. Communications in Statistics, 2016, 46(14):6947-6958. [8] 鲍苏宁,张磊,杨光.基于核主成分分析的异常轨迹检测方法[J].计算机应用,2014,34(7):2107-2110.(BAO S N, ZHANG L, YANG G. Trajectory outlier detection method based on kernel principal component analysis[J]. Journal of Computer Applications, 2014, 34(7):2107-2110. [9] SHIPMON D T, GUREVITCH J M, PISELLI P M, et al. Time series anomaly detection:detection of anomalous drops with limited features and sparse examples in noisy highly periodic data[EB/OL].[2017-08-11].http://cn.arxiv.org/ftp/arxiv/papers/1708/1708.03665.pdf. [10] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2016-05-19]. https://arxiv.org/pdf/1409.0473.pdf. [11] FARIAS G, DORMIDO-CANTO S, VEGA J, et al. Automatic feature extraction in large fusion databases by using deep learning approach[J]. Fusion Engineering and Design, 2016, 112:979-983. [12] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[EB/OL].[2018-07-10]. https://arxiv.org/pdf/1409.3215.pdf [13] ZHENG J, XU C, ZHANG Z, et al. Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network[C]//CISS 2017:Proceedings of the 201751st Annual Conference on Information Sciences and Systems. Piscataway, NJ:IEEE, 2017:1-6. [14] TAI K S, SOCHER R, MANNING C D. Improved semantic representations from tree-structured long short-term memory networks[EB/OL].[2018-05-30]. https://arxiv.org/pdf/1503.00075.pdf. [15] CHO K, van MERRIENBOER B, GULCEHRE C, et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[EB/OL].[2017-09-03]. https://arxiv.org/pdf/1406.1078.pdf. [16] MADLENÁK R, MADLENÁKOVÁ L, SVADLENKA L, et al. Analysis of website traffic dependence on use of selected Internet marketing tools[J]. Procedia Economics and Finance, 2015, 23:123-128. [17] AGNIHOTRI M. Credit card fraud detection[DB/OL].[2017-04-27]. https://www.ushuji.com/financial/296.html. [18] TSANGARATOS P, ILIA I. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments:the influence of models complexity and training dataset size[J]. Catena, 2016, 145:164-179. [19] LAPTEV N, AMIZADEH S, FLINT I. Generic and scalable framework for automated time-series anomaly detection[C]//KDD'15:Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2015:1939-1947. [20] SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]//CEC'99:Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ:IEEE, 1999, 3:1945-1950. [21] 周志华.机器学习:=Machine learning[M]. 北京:清华大学出版社,2016:33-36.(ZHOU Z H. Machine learning:=Machine learning[M]. Beijing:Tsinghua University Press, 2016:33-36.) |