[1] 邢希君, 宋建成, 吝伶艳, 等. 设施农业温室大棚智能控制技术的现状与展望[J]. 江苏农业科学, 2017, 45(21):10-15. (XING X J, SONG J C, LIN L Y, et al. Status and prospects of intelligent control technology for facility agriculture greenhouses[J]. Jiangsu Agricultural Sciences, 2017, 45(21):10-15.) [2] 邰成. 智能温室控制算法的研究与应用[D]. 南京:南京邮电大学, 2013:1-15. (TAI C. The research and applications on the intelligent control algorithm for the greenhouse[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2013:1-15.) [3] 张国辉. 基于深度置信网络的时间序列预测方法及其应用研究[D]. 黑龙江:哈尔滨工业大学, 2017:1-12. (ZHANG G H. Research on time series prediction and its application based on deep belief network[D]. Heilongjiang:Harbin Institute of Technology, 2017:1-12.) [4] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4):772-784. (WANG X, WU J, LIU C, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2018, 44(4):772-784.) [5] 伦淑娴, 林健, 姚显双. 基于小世界回声状态网的时间序列预测[J]. 自动化学报, 2015, 41(9):1669-1679. (LUN S X, LIN J, YAO X S. Time series prediction with an improved echo state network using small world network[J]. Acta Automatica Sinica, 2015, 41(9):1669-1679.) [6] QIU X, REN Y, SUGANTHAN P N, et al. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J]. Applied Soft Computing, 2017, 54:246-255. [7] 左志宇, 毛罕平, 张晓东, 等. 基于时序分析法的温室温度预测模型[J]. 农业机械学报, 2010, 41(11):173-177. (ZUO Z Y, MAO H P, ZHANG X D, et al. Forecast model of greenhouse temperature based on time series method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11):173-177.) [8] 符国槐, 张波, 杨再强, 等. 塑料大棚小气候特征及预报模型的研究[J]. 中国农学通报, 2011, 27(13):242-248. (FU G H, ZHANG B, YANG Z Q, et al. Research on the microclimate characteristics and inside temperature prediction model for plastic greenhouse[J]. Chinese Agricultural Science Bulletin, 2011, 27(13):272-248.) [9] 朱春侠, 童淑敏, 胡景华, 等. BP神经网络在日光温室湿度预测中的应用[J]. 农机化研究, 2012, 34(7):207-210. (ZHU C X, TONG S M, HU J H, et al. Application of nerve network on forecasting temperature in sunlight greenhouse[J]. Journal of Agricultural Mechanization Research, 2012, 34(7):207-210.) [10] 于海南, 郑荣进, 步文月, 等. 基于BP神经网络PID控制器在水产温室温度控制中的应用[J]. 安徽农业科学, 2016, 44(3):312-315. (YU H N, ZHENG R J, BU W Y, et al. Application of PID controller based on BP neural network in temperature control of aquaculture greenhouse[J]. Journal of Anhui Agricultural Sciences, 2016, 44(3):312-315.) [11] QING X Y, NIU Y G. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J]. Energy, 2018, 148:461-468. [12] LI C, DING Z, YI J, et al. Deep belief network based hybrid model for building energy consumption prediction[J]. Energies, 2018, 11(1):242. [13] 秘立鹏, 宋建成, 王天水, 等. 设施农业温室大棚网络型自适应控制系统的开发[J]. 农机化研究, 2014, 36(7):124-128. (MI L P, SONG J C, WANG T S, et al. Development of adaptive control system based on ethernet network in facilities agricultural greenhouse[J]. Journal of Agricultural Mechanization Research, 2014, 36(7):124-128.) [14] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [15] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-127. [16] GENG Z, LI Z, HAN Y. A new deep belief network based on RBM with glial chains[J]. Information Sciences, 2018, 463/464:294-306. [17] CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2018-05-10]. https://arxiv.org/pdf/1406.1078. |