Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (9): 2952-2957.DOI: 10.11772/j.issn.1001-9081.2023081100
• Frontier and comprehensive applications • Previous Articles Next Articles
Guixiang XUE1(), Hui WANG2, Weifeng ZHOU3, Yu LIU3, Yan LI4
Received:
2023-08-15
Revised:
2023-11-01
Accepted:
2023-11-16
Online:
2023-12-18
Published:
2024-09-10
Contact:
Guixiang XUE
About author:
WANG Hui, born in 1999, M. S. candidate. His research interests include intelligent transport system.Supported by:
通讯作者:
薛桂香
作者简介:
王辉(1999—),男,河北邯郸人,硕士研究生,主要研究方向:智能交通系统基金资助:
CLC Number:
Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network[J]. Journal of Computer Applications, 2024, 44(9): 2952-2957.
薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081100
模型 | 15 min预测 | 30 min预测 | 45 min预测 | 60 min预测 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | MAPE/% | RMSE | MAE | MAPE/% | RMSE | MAE | MAPE/% | RMSE | MAE | MAPE/% | |
HA | 29.310 0 | 17.946 9 | 0.241 2 | 30.610 5 | 18.925 4 | 0.259 7 | 31.716 3 | 19.811 9 | 0.264 9 | 32.680 3 | 20.615 1 | 0.281 1 |
SVR | 28.838 4 | 17.307 6 | 0.221 6 | 29.654 5 | 17.635 3 | 0.239 8 | 31.045 6 | 19.735 0 | 0.257 8 | 32.239 3 | 19.706 8 | 0.279 6 |
GRU | 27.515 4 | 16.360 0 | 0.198 2 | 28.225 4 | 17.289 5 | 0.205 4 | 29.885 4 | 19.145 9 | 0.221 1 | 30.248 4 | 19.355 8 | 0.251 9 |
DCRNN | 26.064 7 | 16.879 5 | 0.192 1 | 27.985 9 | 16.981 3 | 0.210 4 | 29.015 7 | 18.879 1 | 0.219 7 | 30.024 9 | 19.016 7 | 0.232 1 |
T-GCN | 25.464 5 | 16.455 5 | 0.190 3 | 27.828 7 | 16.773 2 | 0.201 2 | 28.846 0 | 18.401 3 | 0.215 3 | 29.604 7 | 18.902 4 | 0.240 4 |
A3T-GCN | 25.383 3 | 16.904 4 | 0.189 8 | 27.788 4 | 16.389 3 | 0.197 6 | 28.450 7 | 18.039 3 | 0.208 7 | 28.969 8 | 18.590 9 | 0.221 7 |
KG-DGCN-GRU | 24.229 8 | 15.500 3 | 0.173 9 | 25.607 4 | 16.511 4 | 0.186 7 | 27.646 0 | 17.480 7 | 0.188 7 | 28.821 7 | 17.975 7 | 0.203 4 |
Tab. 1 Performance comparison of KG-DGCN-GRU prediction algorithm and other baseline algorithms
模型 | 15 min预测 | 30 min预测 | 45 min预测 | 60 min预测 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | MAPE/% | RMSE | MAE | MAPE/% | RMSE | MAE | MAPE/% | RMSE | MAE | MAPE/% | |
HA | 29.310 0 | 17.946 9 | 0.241 2 | 30.610 5 | 18.925 4 | 0.259 7 | 31.716 3 | 19.811 9 | 0.264 9 | 32.680 3 | 20.615 1 | 0.281 1 |
SVR | 28.838 4 | 17.307 6 | 0.221 6 | 29.654 5 | 17.635 3 | 0.239 8 | 31.045 6 | 19.735 0 | 0.257 8 | 32.239 3 | 19.706 8 | 0.279 6 |
GRU | 27.515 4 | 16.360 0 | 0.198 2 | 28.225 4 | 17.289 5 | 0.205 4 | 29.885 4 | 19.145 9 | 0.221 1 | 30.248 4 | 19.355 8 | 0.251 9 |
DCRNN | 26.064 7 | 16.879 5 | 0.192 1 | 27.985 9 | 16.981 3 | 0.210 4 | 29.015 7 | 18.879 1 | 0.219 7 | 30.024 9 | 19.016 7 | 0.232 1 |
T-GCN | 25.464 5 | 16.455 5 | 0.190 3 | 27.828 7 | 16.773 2 | 0.201 2 | 28.846 0 | 18.401 3 | 0.215 3 | 29.604 7 | 18.902 4 | 0.240 4 |
A3T-GCN | 25.383 3 | 16.904 4 | 0.189 8 | 27.788 4 | 16.389 3 | 0.197 6 | 28.450 7 | 18.039 3 | 0.208 7 | 28.969 8 | 18.590 9 | 0.221 7 |
KG-DGCN-GRU | 24.229 8 | 15.500 3 | 0.173 9 | 25.607 4 | 16.511 4 | 0.186 7 | 27.646 0 | 17.480 7 | 0.188 7 | 28.821 7 | 17.975 7 | 0.203 4 |
模型 | 训练 时长 | 推理 时长 | 模型 | 训练 时长 | 推理 时长 |
---|---|---|---|---|---|
KG-DGCN-GRU | 3 012 | 11 | DCRNN | 4 907 | 20 |
A3T-GCN | 3 200 | 14 | GRU | 2 141 | 8 |
T-GCN | 3 186 | 15 | SVR | 1 208 | 4 |
Tab. 2 Training time and inference time comparison of KG-DGCN-GRU and other baseline algorithms
模型 | 训练 时长 | 推理 时长 | 模型 | 训练 时长 | 推理 时长 |
---|---|---|---|---|---|
KG-DGCN-GRU | 3 012 | 11 | DCRNN | 4 907 | 20 |
A3T-GCN | 3 200 | 14 | GRU | 2 141 | 8 |
T-GCN | 3 186 | 15 | SVR | 1 208 | 4 |
模型 | RMSE | MAE | MAPE/% |
---|---|---|---|
KG-DGCN-GRU(weather) | 24.300 7 | 15.590 0 | 0.191 0 |
KG-DGCN-GRU(highway) | 25.048 9 | 16.603 8 | 0.209 3 |
KG-DGCN-GRU(weather+highway) | 24.229 8 | 15.500 3 | 0.176 7 |
Tab. 3 Ablation experiment results with different knowledge of KG-DGCN-GRU
模型 | RMSE | MAE | MAPE/% |
---|---|---|---|
KG-DGCN-GRU(weather) | 24.300 7 | 15.590 0 | 0.191 0 |
KG-DGCN-GRU(highway) | 25.048 9 | 16.603 8 | 0.209 3 |
KG-DGCN-GRU(weather+highway) | 24.229 8 | 15.500 3 | 0.176 7 |
模型 | RMSE | MAE | MAPE/% |
---|---|---|---|
KG-GCN-GRU | 26.842 8 | 17.658 6 | 0.204 6 |
KG-DGCN-GRU | 24.229 8 | 15.500 3 | 0.176 7 |
Tab. 4 Ablation experiment results with DGCN and GCN of KG-DGCN-GRU
模型 | RMSE | MAE | MAPE/% |
---|---|---|---|
KG-GCN-GRU | 26.842 8 | 17.658 6 | 0.204 6 |
KG-DGCN-GRU | 24.229 8 | 15.500 3 | 0.176 7 |
1 | KALAMARAS I, ZAMICHOS A, SALAMANIS A, et al. An interactive visual analytics platform for smart intelligent transportation systems management [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 487-496. |
2 | GASTEIGER J, WEIβENBERGER S, GÜNNEMANN S. Diffusion improves graph learning [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 133666-13378. |
3 | ZHANG S, SONG Y, JIANG D, et al. Noise-identified Kalman filter for short-term traffic flow forecasting [C]// Proceedings of the 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks. Piscataway: IEEE, 2019: 462-466. |
4 | YE Q, SZETO W Y, WONG S C. Short-term traffic speed forecasting based on data recorded at irregular intervals [J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1727-1737. |
5 | CHANG H, LEE Y, YOON B, et al. Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences [J]. IET Intelligent Transport Systems, 2012, 6(3): 292-305. |
6 | HU W, YAN L, LIU K, et al. A short-term traffic flow forecasting method based on the hybrid PSO-SVR [J]. Neural Processing Letters, 2016, 43(1): 155-172. |
7 | ZOU Z, PENG H, LIU L, et al. Deep convolutional mesh RNN for urban traffic passenger flows prediction [C]// Proceedings of the 2018 IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. Piscataway: IEEE, 2018: 1305-1310. |
8 | MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data [J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. |
9 | FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction [C]// Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Piscataway: IEEE, 2016: 324-328. |
10 | YUAN H, LI G. A survey of traffic prediction: from spatio-temporal data to intelligent transportation [J]. Data Science and Engineering, 2021, 6(1): 63-85. |
11 | 罗文慧,董宝田,王泽胜.基于CNN-SVR混合深度学习模型的短时交通流预测[J].交通运输系统工程与信息,2017,17(5):68-74. |
LUO W H, DONG B T, WANG Z S. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74. | |
12 | MA D, SHENG B, JIN S, et al. Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching [J]. IEEE Access, 2018, 6: 75629-75638. |
13 | YU B, LEE Y, SOHN K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a Graph Convolutional Neural network (GCN) [J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 189-204. |
14 | 冯宁,郭晟楠,宋超,等.面向交通流量预测的多组件时空图卷积网络[J].软件学报,2019,30(3):759-769. |
FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting [J]. Journal of Software, 2019, 30(3): 759-769. | |
15 | 张永凯,武志昊,林友芳,等.面向交通流量预测的时空超关系图卷积网络[J].计算机应用,2021,41(12):3578-3584. |
ZHANG Y K, WU Z H, LIN Y F, et al. Spatio-temporal hyper-relationship graph convolutional network for traffic flow forecasting [J]. Journal of Computer Applications, 2021, 41(12): 3578-3584. | |
16 | CAO Y, LIU D, YIN Q, et al. MSASGCN: multi-head self-attention spatiotemporal graph convolutional network for traffic flow forecasting [J]. Journal of Advanced Transportation, 2022, 2022: 2811961. |
17 | KHALED A, ELSIR A M T, SHEN Y. TFGAN: traffic forecasting using generative adversarial network with multi-graph convolutional network [J]. Knowledge-Based Systems, 2022, 249: 108990. |
18 | ZHANG D, KABUKA M R. Combining weather condition data to predict traffic flow: a GRU-based deep learning approach [J]. IET Intelligent Transport Systems, 2018, 12(7): 578-585. |
19 | ZHU J, WANG Q, TAO C. AST-GCN: attribute-augmented spatiotemporal graph convolutional network for traffic forecasting [J]. IEEE Access, 2021, 9: 35973-35983. |
20 | BORDES A, USUNIER A, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 2787-2795. |
21 | CASTRO-NETO M, Y-S JEONG, M-K JEONG, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions [J]. Expert Systems with Applications, 2009, 36(3): 6164-6173. |
22 | CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11) [2023-08-14]. . |
23 | LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [EB/OL]. [2023-08-01]. . |
24 | ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. |
25 | BAI J, ZHU J, SONG Y, et al. A3T-GCN: attention temporal graph convolutional network for traffic forecasting [J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 485. |
[1] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[2] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[3] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[4] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[5] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[6] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[7] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[8] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[9] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[10] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[11] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[12] | Xiaoyan ZHAO, Yan KUANG, Menghan WANG, Peiyan YUAN. Device-to-device content sharing mechanism based on knowledge graph [J]. Journal of Computer Applications, 2024, 44(4): 995-1001. |
[13] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[14] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
[15] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||