Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2760-2765.DOI: 10.11772/j.issn.1001-9081.2022081146
• Artificial intelligence • Previous Articles Next Articles
Li XU, Xiangyuan FU(), Haoran LI
Received:
2022-08-04
Revised:
2022-11-03
Accepted:
2022-11-14
Online:
2023-01-11
Published:
2023-09-10
Contact:
Xiangyuan FU
About author:
XU Li, born in 1977, Ph. D., associate professor. Her research interests include object detection.Supported by:
通讯作者:
符祥远
作者简介:
徐丽(1977—),女,江西上饶人,副教授,博士,主要研究方向:目标检测基金资助:
CLC Number:
Li XU, Xiangyuan FU, Haoran LI. Spatial-temporal traffic flow prediction model based on gated convolution[J]. Journal of Computer Applications, 2023, 43(9): 2760-2765.
徐丽, 符祥远, 李浩然. 基于门控卷积的时空交通流预测模型[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2760-2765.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022081146
模型 | 5 min | 15 min | 30 min | 60 min | ||||
---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
HA | 3.88 | 7.31 | 4.17 | 7.96 | 4.48 | 8.60 | 4.83 | 9.26 |
SVR | 3.72 | 6.00 | 3.80 | 6.96 | 3.84 | 7.30 | 4.21 | 8.03 |
ARIMA | 7.67 | 10.07 | 7.69 | 9.34 | 7.68 | 10.07 | 7.69 | 10.08 |
GCN | 5.49 | 7.92 | 5.71 | 8.35 | 6.01 | 8.55 | 6.35 | 9.31 |
GRU | 3.26 | 5.21 | 3.85 | 6.69 | 4.19 | 7.15 | 4.55 | 7.38 |
T-GCN | 3.28 | 5.19 | 3.78 | 6.09 | 4.24 | 6.80 | 4.71 | 7.38 |
DCRNN | 3.53 | 5.38 | 3.91 | 5.91 | 4.28 | 6.31 | 4.69 | 7.28 |
ASTGCN | 3.38 | 5.16 | 3.75 | 5.82 | 4.38 | 6.40 | 4.59 | 7.16 |
GC-STTFPM | 3.18 | 5.07 | 3.66 | 5.75 | 3.95 | 6.39 | 4.30 | 6.90 |
Tab. 1 Evaluation indicators of traffic flow prediction under different scales
模型 | 5 min | 15 min | 30 min | 60 min | ||||
---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
HA | 3.88 | 7.31 | 4.17 | 7.96 | 4.48 | 8.60 | 4.83 | 9.26 |
SVR | 3.72 | 6.00 | 3.80 | 6.96 | 3.84 | 7.30 | 4.21 | 8.03 |
ARIMA | 7.67 | 10.07 | 7.69 | 9.34 | 7.68 | 10.07 | 7.69 | 10.08 |
GCN | 5.49 | 7.92 | 5.71 | 8.35 | 6.01 | 8.55 | 6.35 | 9.31 |
GRU | 3.26 | 5.21 | 3.85 | 6.69 | 4.19 | 7.15 | 4.55 | 7.38 |
T-GCN | 3.28 | 5.19 | 3.78 | 6.09 | 4.24 | 6.80 | 4.71 | 7.38 |
DCRNN | 3.53 | 5.38 | 3.91 | 5.91 | 4.28 | 6.31 | 4.69 | 7.28 |
ASTGCN | 3.38 | 5.16 | 3.75 | 5.82 | 4.38 | 6.40 | 4.59 | 7.16 |
GC-STTFPM | 3.18 | 5.07 | 3.66 | 5.75 | 3.95 | 6.39 | 4.30 | 6.90 |
1 | 黄海军. 城市交通网络动态建模与交通行为研究[J]. 管理学报, 2005, 22(1):18-22. 10.3969/j.issn.1672-884X.2005.01.004 |
HUANG H J. Dynamic modeling of urban transportation networks and analysis of its travel behaviors[J]. Chinese Journal of Management, 2005, 2(1):18-22. 10.3969/j.issn.1672-884X.2005.01.004 | |
2 | 刘静,关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3):82-85. 10.3969/j.issn.1002-0268.2004.03.022 |
LIU J, GUAN W. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3):82-85. 10.3969/j.issn.1002-0268.2004.03.022 | |
3 | 袁健,范炳全. 交通流短时预测研究进展[J]. 城市交通, 2012, 10(6): 73-79. 10.3969/j.issn.1672-5328.2012.06.012 |
YUAN J, FAN B Q. Synthesis of short-term traffic flow forecasting research progress[J]. Urban Transport of China, 2012, 10(6):73-79. 10.3969/j.issn.1672-5328.2012.06.012 | |
4 | HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121(3):249-254. 10.1061/(asce)0733-947x(1995)121:3(249) |
5 | M van der VOORT, DOUGHERTY M, WATSON S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5):307-318. 10.1016/s0968-090x(97)82903-8 |
6 | HUANG W H, SONG G J, HONG H K, et al. Deep architecture for traffic flow prediction: deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5):2191-2201. 10.1109/tits.2014.2311123 |
7 | SUN S M, CHEN J, SUN J. Traffic congestion prediction based on GPS trajectory data[J]. International Journal of Distributed Sensor Networks, 2019, 15(5): No.1550147719847440. 10.1177/1550147719847440 |
8 | 阎嘉琳,向隆刚,吴华意,等.基于LSTM的城市道路交通速度预测[J].地理信息世界, 2019, 26(5):79-85. 10.3969/j.issn.1672-1586.2019.05.012 |
YAN J L, XIANG L G, WU H Y, et al. Urban road traffic speed prediction based on LSTM[J]. Geomatics World, 2019, 26(5):79-85. 10.3969/j.issn.1672-1586.2019.05.012 | |
9 | WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 1907-1913. 10.24963/ijcai.2019/264 |
10 | WU Z Z, HUANG M X, ZHAO A P, et al. Traffic prediction based on GCN-LSTM model[J]. Journal of Physics: Conference Series, 2021, 1972: No.012107. 10.1088/1742-6596/1972/1/012107 |
11 | LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. (2018-02-22) [2022-05-23].. |
12 | ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3848-3858. 10.1109/tits.2019.2935152 |
13 | YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 3634-3640. 10.24963/ijcai.2018/505 |
14 | GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 922-929. 10.1609/aaai.v33i01.3301922 |
15 | GUO S N, LIN Y F, WAN H Y, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11):5415-5428. 10.1109/tkde.2021.3056502 |
16 | 王博文,王景升,王统一,等. 基于卷积神经网络与门控循环单元的交通流预测模型[J/OL]. 重庆大学学报 (2022-04-14) [2022-07-13].. 10.1061/9780784480915.262 |
WANG B W, WANG J S, WANG T Y, et al. Multivariable traffic flow prediction model based on convolutional neural network and gate recurrent unit[J/OL]. Journal of Chongqing University (2022-04-14) [2022-07-13].. 10.1061/9780784480915.262 | |
17 | 汪鸣,彭舰,黄飞虎. 基于门控循环图卷积网络的交通流预测[J]. 计算机应用研究, 2022, 39(8):2301-2305. |
WANG M, PENG J, HUANG F H. Traffic flow prediction based on gated recurrent graph convolutional network[J]. Application Research of Computers, 2022, 39(8):2301-2305. |
[1] | Zhigang XU, Chuang ZHANG. Multi-level color restoration of mural image based on gated positional encoding [J]. Journal of Computer Applications, 2024, 44(9): 2931-2937. |
[2] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[3] | Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns [J]. Journal of Computer Applications, 2024, 44(9): 2747-2755. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Qinzhuang ZHAO, Hongye TAN. Time series causal inference method based on adaptive threshold learning [J]. Journal of Computer Applications, 2024, 44(9): 2660-2666. |
[6] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[7] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[8] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[11] | Hongtao SONG, Jiangsheng YU, Qilong HAN. Industrial multivariate time series data quality assessment method [J]. Journal of Computer Applications, 2024, 44(6): 1743-1750. |
[12] | Junfeng SHEN, Xingchen ZHOU, Can TANG. Dual-channel sentiment analysis model based on improved prompt learning method [J]. Journal of Computer Applications, 2024, 44(6): 1796-1806. |
[13] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. |
[14] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. |
[15] | Zixuan YUAN, Xiaoqing WENG, Ningzhen GE. Early classification model of multivariate time series based on orthogonal locality preserving projection and cost optimization [J]. Journal of Computer Applications, 2024, 44(6): 1832-1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||