Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (6): 1607-1613.DOI: 10.11772/j.issn.1001-9081.2018091992

• Artificial intelligence • Previous Articles     Next Articles

Model compression method of convolution neural network based on feature-reuse

JI Shuwei1, YANG Xiwang1, HUANG Jinying2, YIN Ning3   

  1. 1. School of Date Science And Technology, North University of China, Taiyuan Shanxi 030051, China;
    2. School of Mechanical Engineering, North University of China, Taiyuan Shanxi 030051, China;
    3. Software School, North University of China, Taiyuan Shanxi 030051, China
  • Received:2018-09-27 Revised:2018-12-31 Online:2019-06-17 Published:2019-06-10

基于特征复用的卷积神经网络模型压缩方法

冀树伟1, 杨喜旺1, 黄晋英2, 尹宁3   

  1. 1. 中北大学 大数据学院, 太原 030051;
    2. 中北大学 机械工程学院, 太原 030051;
    3. 中北大学 软件学院, 太原 030051
  • 通讯作者: 杨喜旺
  • 作者简介:冀树伟(1992-),男,山西阳泉人,硕士研究生,CCF会员,主要研究方向:深度学习、机器视觉;杨喜旺(1971-),男,内蒙古包头人,副教授,博士,主要研究方向:人工智能、精密仪器与机械、计算机仿真;黄晋英(1971-),女,山西代县人,教授,博士,主要研究方向:结构动力学分析、检测与控制、故障诊断;尹宁(1992-),女,山西忻州人,硕士研究生,CCF会员,主要研究方向:人工智能、深度学习。

Abstract: In order to reduce the volume and computational complexity of the convolutional neural network model without reducing the accuracy, a compression method of convolutional neural network model based on feature reuse unit called FR-unit (Feature-Reuse unit) was proposed. Firstly, different optimization methods were proposed for different types of convolution neural network structures. Then, after convoluting the input feature map, the input feature was combined with output feature. Finally, the combined feature was transferred to the next layer. Through the reuse of low-level features, the total number of extracted features would not change, so as to ensure that the accuracy of optimized network would not change. The experimental results on CIFAR10 dataset show that, the volume of Visual Geometry Group (VGG) model is reduced to 75.4% and the prediction time is reduced to 43.5% after optimization, the volume of Resnet model is reduced to 53.1% and the prediction time is reduced to 60.9% after optimization, without reducing the accuracy on the test set.

Key words: Convolution Neural Network (CNN), feature-reuse, net accelerate, model compression

摘要: 为了在不降低准确率的前提下,减小卷积神经网络模型的体积与计算量,提出一种基于特征复用的卷积神经网络压缩模块——特征复用单元(FR-unit)。首先,针对不同类型的卷积神经网络结构,提出不同的优化方法;然后,在对输入特征图进行卷积操作后,将输入特征与输出特征进行结合;最后,将结合后的特征传递给下一层。通过对低层特征的重复使用,使总的提取的特征数量不发生改变,以保证优化后的网络的准确率不会发生改变。在CIFAR10数据集上进行验证,实验结果表明,优化后的VGG模型体积缩小为优化前的75.4%,预测时间缩短为优化前的43.5%;优化后的Resnet模型体积缩小为优化前的53.1%,预测时间缩短为优化前的60.9%,且在测试集上的准确率均未降低。

关键词: 卷积神经网络, 特征复用, 网络加速, 模型压缩

CLC Number: