[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Piscataway, NJ:IEEE, 2012:1097-1105. [2] SERCU T, PUHRSCH C, KINGSBURY B, et al. Very deep multilingual convolutional neural networks for LVCSR[C]//Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2016:4955-4959. [3] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:1-9. [4] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778. [5] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [6] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//ECCV 2014:Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer, 2014:818-833. [7] HARIHARAN B, ARBELAEZ P, ARBELAEZ R, et al. Simultaneous detection and segmentation[C]//ECCV 2014:Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer, 2014:297-312. [8] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1440-1448. [9] WANG N, YEUNG D Y. Learning a deep compact image representation for visual tracking[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Piscataway, NJ:IEEE, 2013:809-817. [10] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.(ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.) [11] 雷杰,高鑫,宋杰,等.深度网络模型压缩综述[J].软件学报,2018,29(2):251-266.(LEI J, GAO X, SONG J, et al. Survey of deep neural network model compression[J]. Journal of Software, 2018, 29(2):251-266.) [12] OBERMAN S F, FLYNN M J. Design issues in division and other floating-point operations[J]. IEEE Transactions on Computers, 1997, 46(2):154-161. [13] SETIONO R, LIU H. Neural-network feature selector[J]. IEEE Transactions on Neural Networks, 1997, 8(3):654-662. [14] 孔英会,朱成诚,车辚辚.复杂背景下基于MobileNets的花卉识别与模型剪枝[J].科学技术与工程,2018,18(19):84-88.(KONG Y H, ZHU C C, CHE L L. Flower recognition in complex background and model pruning based on MobileNets[J]. Science Technology and Engineering, 2018, 18(19):84-88.) [15] HU H, PENG R, TAI Y W, et al. Network trimming:a data-driven neuron pruning approach towards efficient deep architectures[J]. arXiv Preprint, 2016, 2016:arXiv.1607.03250. [16] ROSENBLUETH E. Point estimates for probability moments[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(10):3812-3814. [17] GOLUB G H, REINSCH C. Singular value decomposition and least squares solutions[J]. Numerische Mathematik, 1970, 14(5):403-420. [18] HUANG G, SUN Y, LIU Z, et al. Deep networks with stochastic depth[C]//Proceedings of the 201614th European Conference on Computer Vision. Berlin:Springer, 2016:646-661. [19] HUANG G, LIU Z, van der MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:2261-2269. |