Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (5): 1508-1515.DOI: 10.11772/j.issn.1001-9081.2021030393
• Advanced computing • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Yifei WANG1, Lei YU2,3, Fei TENG1( ), Jiayu SONG1, Yue YUAN1
), Jiayu SONG1, Yue YUAN1
												  
						
						
						
					
				
Received:2021-03-16
															
							
																	Revised:2021-06-08
															
							
																	Accepted:2021-06-11
															
							
							
																	Online:2022-06-11
															
							
																	Published:2022-05-10
															
							
						Contact:
								Fei TENG   
													About author:WANG Yifei, born in 1996, M. S. candidate. Her researchinterests include cloud computing,big data mining.Supported by:通讯作者:
					滕飞
							作者简介:王艺霏(1996—),女,山西吕梁人,硕士研究生,主要研究方向:云计算、大数据挖掘基金资助:CLC Number:
Yifei WANG, Lei YU, Fei TENG, Jiayu SONG, Yue YUAN. Resource load prediction model based on long-short time series feature fusion[J]. Journal of Computer Applications, 2022, 42(5): 1508-1515.
王艺霏, 于雷, 滕飞, 宋佳玉, 袁玥. 基于长-短时序特征融合的资源负载预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1508-1515.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030393
| 网络层 | 参数 | 
|---|---|
| ConvLSTM2D | 卷积核大小为64,卷积步长为(3,3) | 
| LSTM(两层) | 隐藏层为10 | 
| FC(两层) | 输入维度为36,输出维度为6 | 
Tab. 1 ConvLSTM channel configuration
| 网络层 | 参数 | 
|---|---|
| ConvLSTM2D | 卷积核大小为64,卷积步长为(3,3) | 
| LSTM(两层) | 隐藏层为10 | 
| FC(两层) | 输入维度为36,输出维度为6 | 
| 网络层 | 参数 | 
|---|---|
| LSTM1 | 隐藏层为36 | 
| LSTM2 | 隐藏层为20 | 
| FC | 输出维度为6 | 
Tab. 2 LSTM channel configuration
| 网络层 | 参数 | 
|---|---|
| LSTM1 | 隐藏层为36 | 
| LSTM2 | 隐藏层为20 | 
| FC | 输出维度为6 | 
| 模型 | RMSE | MAE | R2 | 
|---|---|---|---|
| LSTM(单通道)[ | 6.167 | 4.492 | 0.658 0 | 
| CNN(单通道)[ | 6.975 | 5.131 | 0.562 7 | 
| CNN+LSTM(双通道) | 5.375 | 3.902 | 0.740 1 | 
| ConvLSTM+LSTM+MLP(双通道) | 5.412 | 3.952 | 0.736 0 | 
| ConvLSTM+LSTM(双通道) | 5.274 | 3.823 | 0.815 8 | 
Tab. 3 Comparison of single-channel and dual-channel results
| 模型 | RMSE | MAE | R2 | 
|---|---|---|---|
| LSTM(单通道)[ | 6.167 | 4.492 | 0.658 0 | 
| CNN(单通道)[ | 6.975 | 5.131 | 0.562 7 | 
| CNN+LSTM(双通道) | 5.375 | 3.902 | 0.740 1 | 
| ConvLSTM+LSTM+MLP(双通道) | 5.412 | 3.952 | 0.736 0 | 
| ConvLSTM+LSTM(双通道) | 5.274 | 3.823 | 0.815 8 | 
| 模型 | RMSE | MAE | R2 | 
|---|---|---|---|
| ConvLSTM+LSTM | 5.274 | 3.823 | 0.815 8 | 
| LSTM-ED | 5.715 | 4.211 | 0.706 1 | 
| XGBoost | 7.037 | 5.294 | 0.814 0 | 
Tab. 4 Performance comparison of proposed model and benchmark models
| 模型 | RMSE | MAE | R2 | 
|---|---|---|---|
| ConvLSTM+LSTM | 5.274 | 3.823 | 0.815 8 | 
| LSTM-ED | 5.715 | 4.211 | 0.706 1 | 
| XGBoost | 7.037 | 5.294 | 0.814 0 | 
| 1 | SUN X, ANSARI N, WANG R. Optimizing resource utilization of a data center [J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2822-2846. 10.1109/comst.2016.2558203 | 
| 2 | PREVOST J, NAGOTHU K, KELLEY B, et al. Prediction of cloud data center networks loads using stochastic and neural models [C]// Proceedings of the 2011 6th International Conference on System of Systems Engineering. Piscataway: IEEE, 2011: 276-281. 10.1109/sysose.2011.5966610 | 
| 3 | ZHANG Q, ZHANI M F, BOUTABA R, et al. HARMONY: dynamic heterogeneity-aware resource provisioning in the cloud [C]// Proceedings of the 2013 33rd International Conference on Distributed Computing Systems. Piscataway: IEEE, 2013: 510-519. 10.1109/icdcs.2013.28 | 
| 4 | KUMAR T L M, SURENDRA H S, MUNIRAJAPPA R. Holt-winters exponential smoothing and sesonal ARIMA time-series technique for forecasting of onion price in Bangalore market [J]. Mysore Journal of Agricultural Sciences, 2011, 2(1): 602-607. | 
| 5 | LI Q, HAO Q F, XIAO L M, et al. An Integrated approach to automatic management of virtualized resources in cloud environments [J]. Computer Journal, 2011, 54(6): 905-919. 10.1093/comjnl/bxq082 | 
| 6 | SUN Y S, CHEN Y F, CHEN M C. A workload analysis of live event broadcast service in cloud [J]. Procedia Computer Science, 2013, 19(1): 1028-1033. 10.1016/j.procs.2013.06.143 | 
| 7 | VERCAUTEREN T, AGGARWAL P, WANG X, et al. Hierarchical forecasting of web server workload using sequential Monte Carlo training [J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1286-1297. 10.1109/tsp.2006.889401 | 
| 8 | ARDAGNA D, CASOLARI S, COLAJANNI M, et al. Dual time-scale distributed capacity allocation and load redirect algorithms for cloud systems [J]. Journal of Parallel and Distributed Computing, 2012, 72(6): 796-808. 10.1016/j.jpdc.2012.02.014 | 
| 9 | ROY N, DUBEY A, GOKHALE A. Efficient autoscaling in the cloud using predictive models for workload forecasting [C]// Proceedings of the 2011 International Conference on Cloud Computing. Piscataway: IEEE, 2011: 500-507. 10.1109/cloud.2011.42 | 
| 10 | RAJARAM K, MALARVIZHI M P. Utilization based prediction model for resource provisioning [C]// Proceedings of the 2017 International Conference on Computer. Piscataway: IEEE, 2017:1-6. 10.1109/icccsp.2017.7944099 | 
| 11 | KATTEPUR A, NAMBIAR M. Service demand modeling and performance prediction with single-user tests [J]. Performance Evaluation, 2017, 110(4): 1-21. 10.1016/j.peva.2017.02.003 | 
| 12 | CAO L. Support vector machines experts for time series forecasting [J]. Neurocomputing, 2003, 51(4): 321-339. 10.1016/s0925-2312(02)00577-5 | 
| 13 | EDDAHECH A, CHTOUROUS S, CHTOUROU M. Hierarchical neural networks based prediction and control of dynamic reconfiguration for multilevel embedded systems [J]. Journal of Systems Architecture, 2013, 59(1): 48-59. 10.1016/j.sysarc.2012.11.002 | 
| 14 | DANG T, TRAN N, NGUYEN B M, et al. PD-GABP: A novel prediction model applying for elastic applications in distributed environment [C]// Proceedings of the 2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science. Piscataway: IEEE, 2016: 240-248. 10.1109/nics.2016.7725658 | 
| 15 | ZHANG G, PATUWO B E, HU M Y. Forecasting with artificial neural networks: the state of the art [J]. International Journal of Forecasting, 1998, 14(1): 35-62. | 
| 16 | VENKATESAN. A genetic algorithm based artificial neural network model for the optimization of machining processes [J]. Neural Computing and Applications, 2009, 2(1): 135-140. | 
| 17 | VAZQUEZ C. Time series forecasting of cloud data center workloads for dynamic resource provisioning [D]. San Antonio: The University of Texas at San Antonio, 2015: 10-15. | 
| 18 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 10.1109/tpami.2016.2577031 | 
| 19 | 胡荣磊,芮璐,齐筱,等.基于循环神经网络和注意力模型的文本情感分析[J].计算机应用研究,2019,36(11):3282-3285. 10.19734/j.issn.1001-3695.2018.05.0300 | 
| HU R L, RUI L, QI X, et al. A novel approach to contextual sentiment analysis based on a neural network and attention model [J]. Application Research of Computer, 2019, 36(11): 3282-3285. 10.19734/j.issn.1001-3695.2018.05.0300 | |
| 20 | WANG Z, OATES T. Imaging time-series to improve classification and imputation [C]// Proceedings of the 2015 24th International Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2015: 3939-3945. | 
| 21 | NGUYEN H M, KALRA G, KIM D. Host load prediction in cloud computing using long short-term memory encoder-decoder [J]. Journal of supercomputing, 2019, 75(11): 7592-7605. 10.1007/s11227-019-02967-7 | 
| 22 | CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [EB/OL]. [2016-06-09]. . 10.1145/2939672.2939785 | 
| [1] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [2] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [3] | Yu ZENG, Yang ZHANG, Shang ZENG, Maoli FU, Qixue HE, Linlong ZENG. Time series prediction algorithm based on multi-scale gated dilated convolutional network [J]. Journal of Computer Applications, 2024, 44(11): 3427-3434. | 
| [4] | Xiaoyu HUA, Dongfen LI, You FU, Kejun BI, Shi YING, Ruijin WANG. Industrial chain risk assessment and early warning model combining hierarchical graph neural network and long short-term memory [J]. Journal of Computer Applications, 2024, 44(10): 3223-3231. | 
| [5] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. | 
| [6] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. | 
| [7] | Zhiping ZHU, Yan YANG, Jie WANG. Scene graph-aware cross-modal image captioning model [J]. Journal of Computer Applications, 2024, 44(1): 58-64. | 
| [8] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. | 
| [9] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. | 
| [10] | Zhenliang LI, Bo LI. Improved method of convolution neural network based on matrix decomposition [J]. Journal of Computer Applications, 2023, 43(3): 685-691. | 
| [11] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. | 
| [12] | Bennian YU, Yongzhao ZHAN, Qirong MAO, Wenlong DONG, Honglin LIU. Double complex convolution and attention aggregating recurrent network for speech enhancement [J]. Journal of Computer Applications, 2023, 43(10): 3217-3224. | 
| [13] | ZHANG Jun, WU Pengli, SHI Lukui, SHI Jin, PAN Bin. Deep learning model for multi-station temperature prediction combined with MOD11A1 and surface meteorological station data [J]. Journal of Computer Applications, 2023, 43(1): 321-328. | 
| [14] | LIU Hui, MA Xiang, ZHANG Linyu, HE Rujin. Aspect-based sentiment analysis model integrating match-LSTM network and grammatical distance [J]. Journal of Computer Applications, 2023, 43(1): 45-50. | 
| [15] | Minghui WU, Guangjie ZHANG, Canghong JIN. Time series prediction model based on multimodal information fusion [J]. Journal of Computer Applications, 2022, 42(8): 2326-2332. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||