Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3300-3306.DOI: 10.11772/j.issn.1001-9081.2021081512
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles
Received:
2021-08-25
Revised:
2021-11-08
Accepted:
2021-11-19
Online:
2022-01-07
Published:
2022-10-10
Contact:
Xin WU
About author:
DU Yu, born in 1992, M. S. candidate. His research interests include intelligent power consumption and power system information processing, big data intelligent analysis.Supported by:
杜宇, 严萌, 武昕
通讯作者:
武昕
作者简介:
第一联系人:杜宇(1992—),男,河北保定人,硕士研究生,主要研究方向:智能用电与电力系统信息处理、大数据智能分析基金资助:
CLC Number:
Yu DU, Meng YAN, Xin WU. Non-intrusive load identification algorithm based on convolutional neural network with upsampling pyramid structure[J]. Journal of Computer Applications, 2022, 42(10): 3300-3306.
杜宇, 严萌, 武昕. 基于上采样金字塔结构的卷积神经网络的非侵入负荷辨识算法[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3300-3306.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021081512
算法 | 准确率 | 召回率 | 精确率 | F⁃score |
---|---|---|---|---|
上采样双向金字塔-1D-CNN | 95.21 | 94.11 | 94.00 | 94.93 |
LeNet-1D-CNN[ | 88.14 | 88.46 | 92.00 | 90.19 |
MPHMM[ | 80.71 | 75.52 | 90.00 | 82.13 |
CNN[ | 88.70 | 87.59 | 91.84 | 90.83 |
改进CNN[ | 91.35 | 90.61 | 93.36 | 92.48 |
Tab. 1 Comparison of evaluation indexes of different algorithms
算法 | 准确率 | 召回率 | 精确率 | F⁃score |
---|---|---|---|---|
上采样双向金字塔-1D-CNN | 95.21 | 94.11 | 94.00 | 94.93 |
LeNet-1D-CNN[ | 88.14 | 88.46 | 92.00 | 90.19 |
MPHMM[ | 80.71 | 75.52 | 90.00 | 82.13 |
CNN[ | 88.70 | 87.59 | 91.84 | 90.83 |
改进CNN[ | 91.35 | 90.61 | 93.36 | 92.48 |
1 | 陈刚,王世磊. 能源市场化运作方向的分析研究[J]. 电力需求侧管理, 2016, 18(5):32-34. 10.3969/j.issn.1009-1831.2016.05.008 |
CHEN G, WANG S L. The analysis and research of the energy internet market-oriented operation[J]. Power Demand Side Management, 2016, 18(5):32-34. 10.3969/j.issn.1009-1831.2016.05.008 | |
2 | 祁兵,程媛,武昕. 基于Fisher有监督判别的非侵入式居民负荷辨识方法[J]. 电网技术, 2016, 40(8):2484-2491. 10.13335/j.1000-3673.pst.2016.08.034 |
QI B, CHENG Y, WU X. Non-intrusive household appliance load identification method based on fisher supervised discriminant[J]. Power System Technology, 2016, 40(8): 2484-2491. 10.13335/j.1000-3673.pst.2016.08.034 | |
3 | 陈振宇,黄莉,杨斌,等. 非侵入终端负荷辨识能力测评系统设计方法研究[J]. 电力需求侧管理, 2019, 21(5):68-74. 10.3969/j.issn.1009-1831.2019.05.014 |
CHEN Z Y, HUANG L, YANG B, et al. Research on design method of non-intrusive terminal load identification ability evaluation test system[J]. Power Demand Side Management, 2019, 21(5):68-74. 10.3969/j.issn.1009-1831.2019.05.014 | |
4 | HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12):1870-1891. 10.1109/5.192069 |
5 | 祁兵,董超,武昕,等. 基于DTW算法与稳态电流波形的非侵入式负荷辨识方法[J]. 电力系统自动化, 2018, 42(3):70-76. 10.7500/AEPS20170103001 |
QI B, DONG C, WU X, et al. Non-intrusive load identification method based on DTW algorithm and steady-state current waveform[J]. Automation of Electric Power Systems, 2018, 42(3):70-76. 10.7500/AEPS20170103001 | |
6 | 牛卢璐,贾宏杰. 一种适用于非侵入式负荷监测的暂态事件检测算法[J]. 电力系统自动化, 2011, 35(9):30-35. |
NIU L L, JIA H J. Transient event detection algorithm for non-intrusive load monitoring[J]. Automation of Electric Power Systems, 2011, 35(9): 30-35. | |
7 | 董哲,陈玉梁,薛同来,等. 基于全局与滑动窗口结合的Attention机制的非侵入式负荷分解算法[J/OL]. 电测与仪表 (2020-10-20) [2021-11-04].. |
DONG Z, CHEN Y L, XUE T L, et al. Non-intrusive load monitoring algorithm based on attention mechanism combined with global and sliding window[J/OL]. Electrical Measurement and Instrumentation (2020-10-20) [2021-11-04].. | |
8 | CHANG H H, LIN L S, CHEN N M, et al. Particle-swarm-optimization-based nonintrusive demand monitoring and load identification in smart meters[J]. IEEE Transactions on Industry Applications, 2013, 49(5):2229-2236. 10.1109/tia.2013.2258875 |
9 | CHANG H H. Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses[J]. Energies, 2012, 5(11): 4569-4589. 10.3390/en5114569 |
10 | ROOS J G, LANE I E, BOTHA E C, et al. Using neural networks for non-intrusive monitoring of industrial electrical loads[C]// Proceedings of the 1994 IEEE Instrumentation and Measurement Technology Conference. Piscataway: IEEE, 1994:115-118. |
11 | 刘一铭,李惠民,王乐挺,等. 基于卷积神经网络的非侵入式负荷监测方法[J]. 电测与仪表, 2022, 59(1):148-154. |
LIU Y M, LI H M, WANG L T, et al. Non-intrusive load monitoring method based on convolutional neural network[J]. Electrical Measurement and Instrumentation, 2022, 59(1):148-154. | |
12 | FIGUEIREDO M, DE ALMEIDA A, RIBEIRO B. Home electrical signal disaggregation for Non-Intrusive Load Monitoring (NILM) systems[J]. Neurocomputing, 2012, 96:66-73. 10.1016/j.neucom.2011.10.037 |
13 | 李莉,黄友金,熊炜,等. 基于改进卷积神经网络的非侵入负荷辨识方法研究[J/OL]. 电测与仪表. (2021-04-22) [2021-05-10].. 10.3390/en14030684 |
LI L, HUANG Y J, XIONG W, et al. Study on non intrusive load identification method based on improved convolutional neural network[J/OL]. Electrical Measurement and Instrumentation. (2021-04-22) [2021-05-10].. 10.3390/en14030684 | |
14 | 李如意,张鹏,刘永光,等. 基于随机森林的非侵入式家庭负荷辨识方法[J]. 电测与仪表, 2021, 58(4):9-16. 10.19753/j.issn1001-1390.2021.04.002 |
LI R Y, ZHANG P, LIU Y G, et al. Non-intrusive household load identification method based on random forest[J]. Electrical Measurement and Instrumentation, 2021, 58(4):9-16. 10.19753/j.issn1001-1390.2021.04.002 | |
15 | 张玉天,邓春宇,刘沅昆,等. 基于卷积神经网络的非侵入负荷辨识算法[J]. 电网技术, 2020, 44(6):2038-2044. 10.13335/j.1000-3673.pst.2019.0653 |
ZHANG Y T, DENG C Y, LIU Y K, et al. Non-intrusive load identification algorithm based on convolution neural network[J]. Power System Technology, 2020, 44(6):2038-2044. 10.13335/j.1000-3673.pst.2019.0653 | |
16 | 赵康宁,蒲天骄,王新迎,等. 基于改进贝叶斯神经网络的光伏出力概率预测[J]. 电网技术, 2019, 43(12):4377-4386. 10.13335/j.1000-3673.pst.2019.1461 |
ZHAO K N, PU T J, WANG X Y, et al. Probabilistic forecasting for photovoltaic power based on improved Bayesian neural network[J]. Power System Technology, 2019, 43(12): 4377-4386. 10.13335/j.1000-3673.pst.2019.1461 | |
17 | 高佳豪,郭瑜,伍星. 基于SANC和一维卷积神经网络的齿轮箱轴承故障诊断[J]. 振动与冲击, 2020, 39(19):204-209, 257. 10.13465/j.cnki.jvs.2020.19.030 |
GAO J H, GUO Y, WU X. Gearbox bearing fault diagnosis based on SANC and 1-D CNN[J]. Journal of Vibration and Shock, 2020, 39(19): 204-209, 257. 10.13465/j.cnki.jvs.2020.19.030 | |
18 | 金列俊,詹建明,陈俊华,等. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3):467-474. 10.3785/j.issn.1008-973X.2020.03.006 |
JIN L J, ZHAN J M, CHEN J H, et al. Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(3): 467-474. 10.3785/j.issn.1008-973X.2020.03.006 | |
19 | REN Z R, TANG B, WANG L F, et al. Household appliance identification based on a novel load signature processing framework[C]// Proceedings of the IEEE 3rd Conference on Energy Internet and Energy System Integration. Piscataway: IEEE, 2019: 2076-2080. 10.1109/ei247390.2019.9062041 |
20 | 张丽,张涛,张宏伟,等. 一种基于多参量隐马尔可夫模型的负荷辨识方法[J]. 电力系统保护与控制, 2019, 47(20):81-90. |
ZHANG L, ZHANG T, ZHANG H W, et al. Research on a method of load identification based on multi parameter hidden Markov model[J]. Power System Protection and Control, 2019, 47(20):81-90. |
[1] | Zhenliang LI, Bo LI. Improved method of convolution neural network based on matrix decomposition [J]. Journal of Computer Applications, 2023, 43(3): 685-691. |
[2] | Mo LI, Tianliang LU, Ziheng XIE. Android malware family classification method based on code image integration [J]. Journal of Computer Applications, 2022, 42(5): 1490-1499. |
[3] | Yifei WANG, Lei YU, Fei TENG, Jiayu SONG, Yue YUAN. Resource load prediction model based on long-short time series feature fusion [J]. Journal of Computer Applications, 2022, 42(5): 1508-1515. |
[4] | Yimin CAO, Lei CAI, Jingyang GAO. Gene data generation method based on generative adversarial network [J]. Journal of Computer Applications, 2022, 42(3): 783-790. |
[5] | Xinyu CHEN, Mingzhe LIU, Jun REN, Ying TANG. Parameter asynchronous updating algorithm based on multi-column convolutional neural network [J]. Journal of Computer Applications, 2022, 42(2): 395-403. |
[6] | TAN Daoqiang, ZENG Cheng, QIAO Jinxia, ZHANG Jun. Shadow detection method based on hybrid attention model [J]. Journal of Computer Applications, 2021, 41(7): 2076-2081. |
[7] | NIU Kangli, CHEN Yuzhang, SHEN Junfeng, ZENG Zhangfan, PAN Yongcai, WANG Yichong. Dual-channel night vision image restoration method based on deep learning [J]. Journal of Computer Applications, 2021, 41(6): 1775-1784. |
[8] | Huaiyu ZHU, Bo LI. Single shot multibox detector recognition method for aerial targets of unmanned aerial vehicle [J]. Journal of Computer Applications, 2021, 41(11): 3234-3241. |
[9] | Guihui CHEN, Huikang LIU, Zhongbing LI, Jiao PENG, Shaotian WANG, Jinyu LIN. Improved algorithm of generative adversarial network based on arbitration mechanism [J]. Journal of Computer Applications, 2021, 41(11): 3185-3191. |
[10] | YIN Chunyong, HE Miao. Text classification based on improved capsule network [J]. Journal of Computer Applications, 2020, 40(9): 2525-2530. |
[11] | YE Yang, CAI Qiong, DU Xiaobiao. Single image super-resolution method based on non-local channel attention mechanism [J]. Journal of Computer Applications, 2020, 40(12): 3618-3623. |
[12] | DU Nianmao, XU Jiachen, XIAO Zhiyong. Undersampled brain magnetic resonance image reconstruction method based on convolutional neural network [J]. Journal of Computer Applications, 2020, 40(10): 3060-3065. |
[13] | DENG Tianmin, FANG Fang, ZHOU Zhenhao. Traffic sign recognition based on improved convolutional neural network with spatial pyramid pooling [J]. Journal of Computer Applications, 2020, 40(10): 2872-2880. |
[14] | CHENG Junhua, ZENG Guohui, LU Dunke, HUANG Bo. Improved convolution neural network model averaging method based on Dropout [J]. Journal of Computer Applications, 2019, 39(6): 1601-1606. |
[15] | JI Shuwei, YANG Xiwang, HUANG Jinying, YIN Ning. Model compression method of convolution neural network based on feature-reuse [J]. Journal of Computer Applications, 2019, 39(6): 1607-1613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||