[1] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501. [2] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4):879-892. [3] HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2012, 42(2):513-529. [4] ZONG W W, HUANG G B, CHEN Y Q. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101:229-242. [5] LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6):1411-1423. [6] LAN Y, HU Z J, SOH Y C, et al. An extreme learning machine approach for speaker recognition[J]. Neural Computing and Applications, 2013, 22(3/4):417-425. [7] 王光华,李素梅,朱丹,等.极端学习机在立体图像质量客观评价中的应用[J].光电子·激光,2014,25(9):1837-1842.(WANG G H, LI S M, ZHU D, et al. Application of extreme learning machine in objective stereoscopic image quality assessment[J]. Journal of Optoelectronics·Laser, 2014, 25(9):1837-1842.) [8] XU Y, DAI Y Y, DONG Z Y, et al. Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems[J]. Neural Computing and Applications, 2013, 22(3/4):501-508. [9] HORATA P, CHIEWCHANWATTANA S, SUNAT K. Robust extreme learning machine[J]. Neurocomputing, 2013, 102:31-44. [10] RONG H J, ONG Y S, TAN A H, et al. A fast pruned-extreme learning machine for classification problem[J]. Neurocomputing, 2008, 72(1/2/3):359-366. [11] CHARAMA L L, ZHOU H, HUANG G B. Representational learning with ELMs for big data[J]. IEEE Intelligent Systems, 2013, 28(6):31-34. [12] TANG J X, DENG C W, HUANG G B. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4):809-821 [13] ZHU W T, MIAO J, QING L Y, et al. Hierarchical extreme learning machine for unsupervised representation learning[C]//Proceedings of the 2015 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2015:1-8. [14] YANG Y M, WU Q M J. Multilayer extreme learning machine with subnetwork nodes for representation learning[J].IEEE Transactions on Cybernetics, 2016, 46(11):2570-2583. [15] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//ICML 2008:Proceedings of the 25th International Conference on Machine Learning. New York:ACM, 2008:1096-1103. [16] HUANG G, HUANG G B, SONG S J, et al. Trends in extreme learning machines:a review[J]. Neural Networks, 2015, 61:32-48. [17] 郭旭东,李小敏,敬如雪,等.基于改进的稀疏去噪自编码器的入侵检测[J].计算机应用,2019,39(3):769-773.(GUO X D, LI X M, JING R X, et al. Intrusion detection based on improved sparse denoising autoencoder[J]. Journal of Computer Applications, 2019, 39(3):769-773.) [18] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. [19] XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST:a novel image dataset for benchmarking machine learning algorithms[EB/OL].[2018-09-15]. https://arxiv.org/pdf/1708.07747.pdf. [20] ERHAN D. RectanglesData[DB/OL].[2018-09-15]. http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/RectanglesData. [21] ERHAN D. Recognition of convex sets[DB/OL].[2018-09-15]. http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/ConvexNonConvex. [22] 肖冬,王继春,潘孝礼,等.基于改进PCA-ELM方法的穿孔机导盘转速测量[J].控制理论与应用,2010,27(1):19-24.(XIAO D, WANG J C, PAN X L, et al. Modeling and control of guide-disk speed of rotary piercer[J]. Control Theory & Applications, 2017, 27(1):19-24.) [23] 马萌萌.基于深度学习的极限学习机算法研究[D].青岛:中国海洋大学, 2015:28-30.(MA M M. Research on Extreme learning machine algorithm based on deep learning[D]. Qingdao:Ocean University of China, 2015:28-30.) |