[1] MORTELÉ K J, CANTISANI V, TROISI R, et al. Preoperative liver donor evaluation:imaging and pitfalls[J]. Liver Transplantation, 2003, 9(9):S6-S14. [2] SUZUKI K, KOHLBRENNER R, EPSTEIN M L, et al. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms[J]. Medical Physics, 2010, 37(5):2159-2166. [3] ARMATO S G 3rd, SENSAKOVIC W F. Automated lung segmentation for thoracic CT:impact on computer-aided diagnosis[J]. Academic Radiology, 2004, 11(9):1011-1021. [4] UKIL S, REINHARDT J M. Smoothing lung segmentation surfaces in three-dimensional x-ray CT images using anatomic guidance[J]. Academic Radiology, 2005, 12(12):1502-1511. [5] ZHANG X, TIAN J, DENG K, et al. Automatic liver segmentation using a statistical shape model with optimal surface detection[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(10):2622-2626. [6] BADAKHSHANNOORY H, SAEEDI P. A model-based validation scheme for organ segmentation in CT scan volumes[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(9):2681-2693. [7] SUN SH, BAUER C, BEICHEL R. Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach[J]. IEEE Transactions on Medical Imaging, 2012, 31(2):449-460. [8] JI H, HE J, YANG X, et al. ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(3):690-698. [9] ZHANG X, TIAN J, XIANG D, et al. Interactive liver tumor segmentation from CT scans using support vector classification with watershed[C]//Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ:IEEE, 2011:6005-6008. [10] KORFIATIS P, KALOGEROPOULOU C, KARAHALIOU A, et al. Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT[J]. Medical Physics, 2008, 35(12):5290-5302. [11] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [12] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [13] ÇIEK Ç, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net:learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9901. Cham:Springer, 2016:424-432. [14] MILLETARI F, NAVAB N, AHMADI S. V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision. Piscataway, NJ:IEEE, 2016:565-571. [15] 郭树旭, 马树志, 李晶,等. 基于全卷积神经网络的肝脏CT影像分割研究[J]. 计算机工程与应用, 2017, 53(18):126-131. (GUO S X, MA S Z, LI J, et al. Fully convolutional neural network for liver segmentation in CT image[J]. Computer Engineering and Applications, 2017, 53(18):126-131.) [16] NEGAHDAR M, BEYMER D, SYEDA-MAHMOOD T. Automated volumetric lung segmentation of thoracic CT images using fully convolutional neural network[C]//Proceedings of the Medical Imaging 2018:Computer-Aided Diagnosis, SPIE 10575. Bellingham, WA:SPIE, 2018:1-6. [17] 孙明建, 徐军, 马伟,等. 基于新型深度全卷积网络的肝脏CT影像三维区域自动分割[J]. 中国生物医学工程学报, 2018, 37(4):385-393. (SUN M J, XU J, MA W, et al. A new fully convolutional network for 3D liver region segmentation on CT images[J]. Chinese Journal of Biomedical Engineering, 2018, 37(4):385-393.) [18] JANSSENS R, ZENG G, ZHENG G. Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks[C]//Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging. Piscataway, NJ:IEEE, 2018:893-897. [19] ROTH H R, ODA H, HAYASHI Y, et al. Hierarchical 3D fully convolutional networks for multi-organ segmentation[J]. arXiv E-print, 2017:arXiv:1704.06382. [20] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning.[S.l.]:JMLR, 2015:448-456. [21] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778. [22] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1):1929-1958. [23] KINGMA D P, BA J L. Adam:a method for stochastic optimization[J]. arXiv E-print, 2017:arXiv:1412.6980. [24] KALUVA K C, KHENED M, KORI A,et al. 2D-densely connected convolution neural networks for automatic liver and tumor segmentation[J]. arXiv E-print, 2018:arXiv:1802.02182. [25] VORONTSOV E, TANG A, PAL C, et al. Liver lesion segmentation informed by joint liver segmentation[C]//Proceedings of the IEEE 15th International Symposium on Biomedical Imaging. Piscataway, NJ:IEEE, 2018:1332-1335. [26] LI X, CHEN, QI X, et al. H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674. [27] YUAN Y, BUCKSTEIN M, LO Y. Automatic liver and tumor segmentation using hierarchical convolutional-deconvolutional neural networks with jaccard distance[J]. Medical Physics, 2018, 45(6):E516. |