[1] DING J, CHEN B, LIU H, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3):364-368. [2] 林懿伦,戴星原,李力,等.人工智能研究的新前线:生成式对抗网络[J].自动化学报,2018,44(5):775-792. (LIN Y L, DAI X Y, LI L, et al. The new frontier of AI research:generative adversarial networks[J]. Acta Automatica Sinica, 2018, 44(5):775-792.) [3] 朱俊鹏, 赵洪利, 杨海涛. 基于卷积神经网络的视差图生成技术[J]. 计算机应用, 2018, 38(1):255-259. (ZHU J P, ZHAO H L, YANG H T. Disparity map generation technology based on convolutional neural network[J]. Journal of Computer Applications, 2018, 38(1):255-259.) [4] 陈文兵,管正雄,陈允杰.基于条件生成式对抗网络的数据增强方法[J].计算机应用,2018,38(11):3305-3311. (CHEN W B, GUAN Z X, CHEN Y J. Data augmentation method based on generative adversarial network model[J]. Journal of Computer Applications, 2018, 38(11):3305-3311.) [5] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [6] SALAKHUTDINOV R R, HINTON G E. Deep Boltzmann machines[C/OL]//Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, 2009[2018-12-09]. http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf. [7] BENGIO Y, THIBODEAU-LAUFER É, ALAIN G, et al. Deep generative stochastic networks trainable by backprop[C/OL]//Proceedings of the 31st International Conference on Machine Learning, 2014[2014-05-24]. https://arxiv.org/abs/1306.1091. [8] REZENDE D J, MOHAMED S, WIERSTRA D. Stochastic backpropagation and approximate inference in deep generative models[J]. arXiv E-print, 2014:arXiv:1401.4082. [9] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv E-print, 2014:arXiv:1312.6114. [10] DOSOVITSKIY A, SPRINGENBERG J T, TATARCHENKO M, et al. Learning to generate chairs, tables and cars with convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):692-705. [11] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:2672-2680. [12] ZHU Z, LUO P, WANG X, et al. Multi-view perceptron:a deep model for learning face identity and view representations[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:217-225. [13] LI F-F. Knowledge transfer in learning to recognize visual objects classes[C]//Proceedings of the 2006 International Conference on Development and Learning. Washington, DC:IEEE Computational Intelligence Society, 2006:1-51. [14] LI F, ROB F, PIETRO P. One-Shot learning of object categories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):594-611. [15] SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:International Machine Learning Society, 2016, 48:1842-1850. [16] ANDRYCHOWICZ M, DENIL M, COLMENAREJO S G, et al. Learning to learn by gradient descent by gradient descent[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. La Jolla, CA:Neural Information Processing Systems Foundation, 2016:3981-3989. [17] RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C/OL]//Proceedings of the 5nd International Conference on Learning Representations. 2017[2018-10-24]. https://openreview.net/pdf?id=rJY0-Kcll. |