[1] SETTLES B. Active Learning[M]. San Rafael, CA:Morgan and Claypool Publishers, 2012:1-114.
[2] ZHU X, GOLDBERG A B. Introduction to Semi-Supervised Learning[M]. San Rafael, CA:Morgan and Claypool Publishers, 2009:130.
[3] SEUNG H S, OPPER M, SOMPOLINSKY H. Query by committee[C]//COLT 1992:Proceedings of the 5th Annual ACM Conference on Computational Learning Theory. New York:ACM, 1992:287-294.
[4] COHN D A, GHAHRAMANI Z, JORDAN M I, et al. Active learning with statistical models[J]. Journal of Artificial Intelligence Research, 1996, 4(1):129-145.
[5] WANG M, MIN F, ZHANG Z H, et al. Active learning through density clustering[J]. Expert Systems with Applications, 2017, 85:305-317.
[6] TONG S, KOLLER D. Support vector machine active learning with applications to text classification[J]. Journal of Machine Learning Research, 2001, 2(1):45-66.
[7] THOMPSON C A. Active learning for natural language parsing and information extraction[C]//ICML 1999:Proceeding of the 16th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann Publishers, 1999:406-414.
[8] ZHANG C, CHEN T. An active learning framework for content-based information retrieval[J]. IEEE Transactions on Multimedia, 2002, 4(2):260-268.
[9] YU D, VARADARAJAN B, DENG L, et al. Active learning and semi-supervised learning for speech recognition:a unified framework using the global entropy reduction maximization criterion[J]. Computer Speech and Language, 2010, 24(3):433-444.
[10] MARGINEANTU D D. Active cost-sensitive learning[C]//IJCAI 2005:Proceedings of the 19th International Joint Conference on Artificial Intelligence. San Francisco, CA:Morgan Kaufmann Publishers, 2005:1622-1623.
[11] MIN F, LIU F L, WEN L Y, et al. Tri-partition cost-sensitive active learning through kNN[J]. Soft Computing, 2017, 23(5):1557-1572.
[12] WU Y X, MIN X Y, MIN F, et al. Cost-sensitive active learning with a label uniform distribution model[J]. International Journal of Approximate Reasoning, 2019, 105:49-65.
[13] YAO Y. Three-way decision:an interpretation of rules in rough set theory[C]//Proceedings of the 2009 International Conference on Rough Sets and Knowledge Technology, LNCS 5589. Berlin:Springer, 2009:642-649.
[14] 李华雄,周献中,黄兵,等.决策粗糙集与代价敏感分类[J].计算机科学与探索,2013,7(2):126-135.(LI H X, ZHOU X Z, HUANG B, et al. Decision-theoretic rough set and cost-sensitive classification[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(2):126-135.)
[15] 刘盾,李天瑞,李华雄.粗糙集理论:基于三支决策视角[J].南京大学学报(自然科学版),2013,49(5):574-581. (LIU D, LI T R, LI H X. Rough set theory:a three-way decisions perspective[J]. Journal of Nanjing University (Natural Science), 2013, 49(5):574-581)
[16] 杨习贝,杨静宇.邻域系统粗糙集模型[J].南京理工大学报,2012,36(2):291-295.(YANG X B, YANG J Y. Rough set model based on neighborhood system[J]. Journal of Nanjing University of Science and Technology, 2012, 36(2):291-295.)
[17] SETTLES B, CRAVEN M, Friedland L. Active learning with real annotation costs[EB/OL].[2018-12-13]. https://www.researchgate.net/publication/228770726_Active_learning_with_real_annotation_costs.
[18] LIU A, JUN G, GHOSH J. Spatially cost-sensitive active learning[C]//SDM 2009:Proceedings of the 2009 SIAM International Conference on Data Mining. Philadelphia, PA:SIAM, 2009:814-825.
[19] ZHAO P L, HOI S C H. Cost-sensitive online active learning with application to malicious URL detection[C]//KDD 2013:Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2013:919-927.
[20] CHEN P-L, LIN H-T. Active learning for multiclass cost-sensitive classification using probabilistic models[C]//TAAI 2013:Proceedings of the 2013 Conference on Technologies and Applications of Artificial Intelligence. Washington, DC:IEEE Computer Society, 2013:13-18.
[21] DEMIR B, MINELLO L, BRUZZONE L. Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1272-1284.
[22] HUANG K-H, LIN H-T. A novel uncertainty sampling algorithm for cost-sensitive multiclass active learning[C]//ICDM 2016:Proceedings of the 2016 IEEE 16th International Conference on Data Ming. Piscataway, NJ:IEEE, 2016:925-930.
[23] BAHNSEN A C, AOUADA D, OTTERSTEN B. Example-dependent cost-sensitive logistic regression for credit scoring[C]//ICMLA 2014:Proceedings of the 2014 13th International Conference on Machine Learning and Application. Washington, DC:IEEE Computer Society, 2014:263-269.
[24] BAHNSEN A C, AOUADA D, OTTERSTEN B. Example-dependent cost-sensitive decision trees[J]. Expert Systems with Applications, 2015, 42(19):6609-6619.
[25] BAHNSEN A C, AOUADA D, OTTERSTEN B. Ensemble of example-dependent cost-sensitive decision trees[EB/OL].[2018-12-13]. https://arxiv.org/pdf/1505.04637v1.pdf.
[26] QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1):81-106.
[27] LIAW A, WIENER M. Classification and regression by random forest[J]. R News, 2002, 2/3:18-22.
[28] CRISTIANINI N, SHAWE T J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[M]. Cambridge, Eng.:Cambridge University Press, 2000:46-71. |