[1] PAPAMARTZIVANOS D,GÓMEZ MÁRMOL F,KAMBOURAKIS G. Introducing deep learning self-adaptive misuse network intrusion detection systems[J]. IEEE Access,2019,7:13546-13560. [2] 杨宏宇, 王峰岩. 基于改进卷积神经网络的网络入侵检测模型[J]. 计算机应用,2019,39(9):2604-2610.(YANG H Y, WANG F Y. Network intrusion detection model based on improved convolutional neural network[J]. Journal of Computer Applications,2019,39(9):2604-2610.) [3] 丁红卫, 万良, 邓烜堃. 改进的HS算法优化BP神经网络的入侵检测研究[J]. 计算机工程与科学,2019,41(1):65-72.(DING H W,WAN L,DENG X K. Optimizing intrusion detection of BP neural networks by a modified harmony search algorithm[J]. Computer Engineering and Science,2019,41(1):65-72.) [4] ZEGEYE W K,DEAN R A,MOAZZAMI F. Multi-layer hidden Markov model based intrusion detection system[J]. Machine Learning and Knowledge Extraction,2019,1(1):265-286. [5] XIAO Y H,XING C,ZHANG T N,et al. An intrusion detection model based on feature reduction and convolutional neural networks[J]. IEEE Access,2019,7:42210-42219. [6] 曹卫东, 许志香. 高效的半监督多层次入侵检测算法[J]. 计算机应用,2019,39(7):1979-1984.(CAO W D,XU Z X. Efficient semi-supervised multi-level intrusion detection algorithm[J]. Journal of Computer Applications,2019,39(7):1979-1984.) [7] 曹卫东, 许志香, 王静. 基于深度生成模型的半监督入侵检测算法[J]. 计算机科学,2019,46(3):197-201.(CAO W D,XU Z X,WANG J. Intrusion detection based on semi-supervised learning with deep generative models[J]. Computer Science,2019,46(3):197-201.) [8] ZHU X J,GOLDBERG A B. Introduction to Semi-Supervised Learning[M]. San Rafael,CA:Morgan & Claypool Publishers, 2009:31-32. [9] 周志华. 基于分歧的半监督学习[J]. 自动化学报,2013,39(11):1871-1878. (ZHOU Z H. Disagreement-based semisupervised learning[J]. Acta Automatica Sinica,2013,39(11):1871-1878.) [10] BLUM A,MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Computational Learning Theory. New York:ACM,1998:92-100. [11] YAO Y Y. An outline of a theory of three-way decisions[C]//Proceedings of the 2012 International Conference on Rough Sets and Current Trends in Computing,LNCS 7413. Berlin:Springer, 2012:1-17. [12] MALDONADO S,PETERS G,WEBER R. Credit scoring using three-way decisions with probabilistic rough sets[J]. Information Sciences,2020,507:700-714. [13] YAO Y Y. Three-way decisions with probabilistic rough sets[J]. Information Sciences,2010,180(3):341-353. [14] 刘盾, 梁德翠. 广义三支决策与狭义三支决策[J]. 计算机科学与探索,2017,11(3):502-510. (LIU D,LIANG D C. Generalized three-way decisions and special three-way decisions[J]. Journal of Frontiers of Computer Science and Technology, 2017,11(3):502-510.) [15] 陈刚, 刘秉权, 吴岩. 求三支决策最优阈值的新算法[J]. 计算机应用,2012,32(8):2212-2215.(CHEN G,LIU B Q,WU Y. New algorithm to get optimal threshold for three-decision-making[J]. Journal of Computer Applications,2012,32(8):2212-2215.) [16] VINCENT P,LAROCHELLE H,BENGIO Y,et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. New York:ACM,2008:1096-1103. [17] 张全龙, 王怀彬. 基于膨胀卷积和门控循环单元组合的入侵检测模型[J]. 计算机应用,2021,41(5):1372-1377.(ZHANG J L, WANG H B. Intrusion detection model based on dilated convolution and gated recurrent unit[J]. Journal of Computer Applications,2021,41(5):1372-1377.) [18] SHONE N,NGOC T N,PHAI V D,et al. A deep learning approach to network intrusion detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2018,2(1):41-50. [19] LI Y Z,ZHANG S P,LI Y,et al. Research on intrusion detection algorithm based on deep learning and semi-supervised clustering[J]. International Journal of Cyber Research and Education, 2020,2(2):38-60. [20] 高妮, 高岭, 贺毅岳, 等. 基于自编码网络特征降维的轻量级入侵检测模型[J]. 电子学报,2017,45(3):730-739.(GAO N, GAO L,HE Y Y,et al. A lightweight intrusion detection model based on autoencoder network with feature reduction[J]. Acta Electronica Sinica,2017,45(3):730-739.) [21] GAO X W,SHAN C,HU C Z,et al. An adaptive ensemble machine learning model for intrusion detection[J]. IEEE Access, 2019,7:82512-82521. |