[1] ?LIOBAITE I, PECHENIZKIY M, GAMA J. An overview of concept drift applications[M]//JAPKOWICZ N, STEFANOWSKI J. Big Data Analysis:New Algorithms for a New Society, SBD 16. Berlin:Springer, 2016:91-114.
[2] 孙宇.针对含有概念漂移问题的增量学习算法研究[D].合肥:中国科学技术大学,2017:12-18.(SUN Y. Research on incremental learning algorithms for conceptual drift problem[D]. Hefei:University of Science and Technology of China, 2017:12-18).
[3] HEWAHI N M, KOHAIL S N. Learning concept drift using adaptive training set formation strategy[J]. International Journal of Technology Diffusion, 2013, 4(1):33-55.
[4] ALIPPI C, BORACCHI G, ROVERI M. An effective just-in-time adaptive classifier for gradual concept drifts[C]//Proceedings of the 2011 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2011:1675-1682.
[5] 史荧中.耦合的支持向量学习方法及应用研究[D].无锡:江南大学,2016:89-106.(SHI Y Z. Study on coupled supported vector method and its application[D]. Wuxi:Jiangnan University, 2016:89-106.)
[6] PALIVELA H, KUBAL D, NIRMALA C R. Multiple kernel learning techniques for ligand based virtual screening[C]//Proceedings of the 2017 International Conference on Computer Communication and Informatics. Piscataway, NJ:IEEE, 2017:1-6.
[7] GRINBLAT G L, UZAL L C, CECCATTO H A, et al. Solving nonstationary classification problems with coupled support vector machines[J]. IEEE Transactions on Neural Networks, 2011, 22(1):37-51.
[8] SHI Y, CHUNG F, WANG S. An improved TA-SVM method without matrix inversion and its fast implementation for nonstationary datasets[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2005-2018.
[9] 汪洪桥,孙富春,蔡艳宁,等.多核学习方法[J].自动化学报,2010,36(8):1037-1050.(WANG H Q, SUN F C, CAI Y N, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8):1037-1050.)
[10] GÖNEN M, ALPAYDIN E. Multiple kernel learning algorithms[EB/OL].[2018-12-21]. http://delivery.acm.org/10.1145/2030000/2021071/p2211-gonen.pdf?ip=171.221.175.194&id=2021071&acc=OPEN&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1562746429_892bd32fdc36440e5615efc0f82c56b2.
[11] MANOGARAN G, VARATHARAJAN R, PRIYAN M K. Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system[J]. Multimedia Tools and Applications, 2018, 77(4):4379-4399.
[12] MARCINIAK M, AREVALO H, TFELT-HANSEN J, et al. A multiple kernel learning framework to investigate the relationship between ventricular fibrillation and first myocardial infarction[C]//Proceedings of the 2017 International Conference on Functional Imaging and Modeling of the Heart, LNCS 10263. Berlin:Springer, 2017:161-171.
[13] LIU T, JIN X, GU Y. Sparse multiple kernel learning for hyperspectral image classification using spatial-spectral features[C]//Proceedings of the 6th International Conference on Instrumentation and Measurement, Computer, Communication and Control. Piscataway, NJ:IEEE, 2016:614-618.
[14] VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York:Springer, 1995:24-30.
[15] HAN Y, YANG K, YANG Y, et al. Localized multiple kernel learning with dynamical clustering and matrix regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6):486-499. |