[1] 中国互联网络信息中心. 第43次中国互联网络发展状况统计报告[EB/OL].[2019-03-12]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201902/P020190318523029756345.pdf.(China Internet Network Information Center. The 43rd China Statistical Report on Internet Development[EB/OL].[2019-03-12]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201902/P020190318523029756345.pdf.) [2] WANG P. A collaborative filtering recommendation algorithm based on product clustering[J]. Applied Mechanics & Materials, 2013, 267:87-90. [3] AZADJALAL M M, MORADI P, ABDOLLAHPOURI A, et al. A trust-aware recommendation method based on Pareto dominance and confidence concepts[J]. Knowledge-Based Systems, 2017, 116:130-143. [4] SHU J, SHEN X, LIU H, et al. A content-based recommendation algorithm for learning resources[J]. Multimedia Systems, 2017, 24(2):163-173. [5] 王余斌, 王成良, 文俊浩. 基于用户评论评分与信任度的协同过滤算法[J]. 计算机应用研究, 2018, 35(5):1368-1371. (WANG Y B, WANG C L, WEN J H. Research on collaborative filtering recommendation algorithm based on ratings, reviews and user trust[J]. Application Research of Computers, 2018, 35(5):1368-1371.) [6] LIU H, KONG X, BAI X, et al. Context-based collaborative filtering for citation recommendation[J]. IEEE Access, 2015, 3:1695-1703. [7] MATHEW P, KURIAKOSE B, HEGDE V. Book recommendation system through content based and collaborative filtering method[C]//Proceedings of the 2016 International Conference on Data Mining and Advanced Computing. Piscataway:IEEE, 2016:47-52. [8] LI W, JIAN C, WU J, et al. A collaborative filtering recommendation method based on discrete quantum-inspired shuffled frog leaping algorithms in social networks[J]. Future Generation Computer Systems, 2018, 88:262-270. [9] 于波, 陈庚午, 王爱玲, 等. 一种结合项目属性的混合推荐算法[J]. 计算机系统应用, 2017, 26(1):147-151. (YU B, CHEN G W, WANG A L, et al. Hybrid recommendation algorithm combined with the project properties[J]. Computer Systems & Applications, 2017, 26(1):147-151.) [10] 杨丰瑞, 郑云俊, 张昌. 结合概率矩阵分解的混合型推荐算法[J]. 计算机应用, 2018, 38(3):644-649. (YANG F R, ZHENG Y J, ZHANG C. Hybrid recommendation algorithm based on probability matrix factorization[J]. Journal of Computer Applications, 2018, 38(3):644-649.) [11] MENG X. speedTrust:a super peer-guaranteed trust model in hybrid P2P networks[J]. Journal of Supercomputing, 2018, 74(6):2553-2580. [12] MASSA P, BHATTACHARJEE B. Using trust in recommender systems:an experiment alanalysis[C]//Proceedings of the 2004 International Conference on Trust Management, LNCS 2995. Berlin:Springer, 2004:221-235. [13] GOLBECK J, GERHARD J, O'COLMAN F, et al. Scaling up integrated structural and content-based network analysis[J]. Information Systems Frontiers, 2018, 20(6):1191-1202. [14] MASSA P, AVESANI P. Trust-aware recommender systems[C]//Proceedings of the 2007 ACM Conference on Recommender Systems. New York:ACM, 2007:17-24. [15] JAMALI M, ESTER M. Trustwalker:a random walk model for combining trust-based and itembasedrecommendation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2009:397-406. [16] GUO G, ZHANG J, ZHU F, et al. Factored similarity models with social trust for top-N item recommendation[J]. Knowledge-Based Systems, 2017, 122:17-25. [17] ZHANG T, LI W, WANG L, et al. Social recommendation algorithm based on stochastic gradient matrix decomposition in social network[EB/OL].[2019-01-10]. https://doi.org/10.1007/s12652-018-1167-7. [18] NAZEMIAN A, GHOLAMI H, TAGHIYAREH F. An improved model of trust-aware recommender systems using distrust metric[C]//Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway:IEEE, 2012:1079-1084. [19] UZZI B, SPIRO J. Collaboration and creativity:the small world problem[J]. American Journal of Sociology, 2005, 111(2):447-504. |