[1] SHIMIZU D, KANDA M, KODERA Y. Review of recent molecular landscape knowledge of gastric cancer[J]. Histology and Histopathology, 2018, 33(1):11-26. [2] HIRASAWA T, AOYAMA K, TANIMOTO T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images[J]. Gastric Cancer, 2018, 21(4):653-660. [3] NAWAZ W, AHMED S, TAHIR A, et al. Classification of breast cancer histology images using ALEXNET[C]//Proceedings of the 15th International Conference Image Analysis and Recognition, LNCS10882. Cham:Springer, 2018:869-876. [4] WANG S, XIE S, CHEN X, et al. Alcoholism identification based on an AlexNet transfer learning model[J]. Frontiers in Psychiatry, 2019, 10:No.205. [5] 刘飞, 张俊然, 杨豪. 基于深度学习的糖尿病患者的分类识别[J]. 计算机应用, 2018, 38(S1):39-43. (LIU F, ZHANG J R, YANG H. Classification and recognition of diabetes mellitus based on deep learning[J]. Journal of Computer Applications, 2018, 28(S1):39-43.) [6] 胡光亮, 王艳, 罗勇, 等. 基于卷积神经网络的鼻咽肿瘤MR图像分割[J]. 计算机应用, 2018, 38(S1):208-212. (HU G L, WANG Y, LUO Y, et al. Segmentation of nasopharyngeal nneoplasm MR images based on convolutional neural network[J]. Journal of Computer Applications, 2018, 38(S1):208-212.) [7] 杜剑, 胡炳樑, 张周锋. 基于卷积神经网络与显微高光谱的胃癌组织分类方法研究[J]. 光学学报, 2018, 38(6):267-273. (DU J, HU B L, ZHANG Z F. Gastric carcinoma classification based on convolutional neural network and micro-hyperspectral imaging[J]. Acta Optica Sinica, 2018, 38(6):267-273.) [8] 张泽中, 高敬阳, 吕纲, 等. 基于深度学习的胃癌病理图像分类方法[J]. 计算机科学, 2018, 45(S2):263-268. (ZHANG Z Z, GAO J Y, LYU G, et al. Pathological image classification of gastric cancer based on depth learning[J]. Computer Science, 2018, 45(S2):263-268.) [9] ALOM M Z, TAHA T M, YAKOPCIC C, et al. The history began from AlexNet:a comprehensive survey on deep learning approaches[EB/OL].[2019-02-08]. https://arxiv.org/ftp/arxiv/papers/1803/1803.01164.pdf. [10] PEREZ L, WANG J. The effectiveness of data augmentation in image classification using deep learning[EB/OL].[2019-02-08]. https://arxiv.org/pdf/1712.04621.pdf. [11] SALEHINEJAD H, VALAEE S, DOWDELL T, et al. Image augmentation using radial transform for training deep neural networks[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE, 2018:3016-3020. [12] 吕鸿蒙, 赵地, 迟学斌. 基于增强AlexNet的深度学习的阿尔茨海默病的早期诊断[J]. 计算机科学, 2017, 4(S1):60-70. (LYU H M, ZHAO D, CHI X B. Deep learning for early diagnosis of Alzheimer's disease based on intensive AlexNet[J]. Computer Science, 2017, 44(S1):60-70.) [13] 丁蓬莉, 李清勇, 张振, 等. 糖尿病性视网膜图像的深度神经网络分类方法[J]. 计算机应用, 2017, 37(3):699-704. (DING P L, LI Q Y, ZHANG Z, et al. Diabetic retinal image classification method based on deep neural network[J]. Journal of Computer Applications, 2017, 37(3):699-704.) [14] BJORCK N, GOMES C, SELMAN B, et al. Understanding batch normalization[EB/OL].[2019-01-10]. https://arxiv.org/pdf/1806.02375.pdf. [15] WANG S, PHILLIPS P, SUI Y, et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling[J]. Journal of Medical Systems, 2018, 42(5):No.85. [16] 余博, 郭雷, 赵天云. 基于对数极坐标变换的灰度投影稳像算法[J]. 计算机应用, 2008, 28(12):3126-3128. (YU B, GUO L, ZHAO T Y. Gray projection image stabilizing algorithm based on log-polar image transform[J]. Journal of Computer Applications, 2008, 28(12):3126-3128.) [17] FU H, CHENG J, XU Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging, 2018, 37(7):1597-1605. [18] KUMAR D, WONG A, CLAUSI D A. Lung nodule classification using deep features in CT images[C]//Proceedings of the 12th Conference on Computer and Robot Vision. Piscataway:IEEE, 2015:133-138. [19] KRIZHEYSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc, 2012:1097-1105. [20] MHASKAR H N, MICCHELLI C A. How to choose an activation function[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems. San Francisco:Morgan Kaufmann Publishers Inc, 1993:319-326. [21] XU B, WANG N, CHEN T, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL].[2019-02-08]. https://arxiv.org/pdf/1505.00853.pdf. [22] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-02-08]. https://arxiv.org/pdf/1409.1556.pdf. [23] JING J, DONG A, LI P, et al. Yarn-dyed fabric defect classification based on convolutional neural network[J]. Optical Engineering, 2017, 56(9):093104. [24] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2019-01-10].https://arxiv.org/pdf/1502.03167.pdf. |