[1] TANG X, REN P, HAN Z. Hierarchical competition as equilibrium program with equilibrium constraints towards security-enhanced wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(7):1564-1578. [2] SUN M. Computer network security evaluation based on intelligent algorithm[C]//Proceedings of hte 6th International Conference on Future Generation Communication Technologies. Piscataway:IEEE, 2017:1-4. [3] DEWAL P, NARULA G, JAIN V, et al. Security attacks in wireless sensor networks:a survey[J]. Advances in Intelligent Systems and Computing, 2018, 729:47-58. [4] WU Q, ZHANG F. Dynamical behavior of susceptible-infected-recovered-susceptible epidemic model on weighted networks[J]. Physica A:Statistical Mechanics and its Applications, 2018, 491:382-390. [5] LIU Q, VAN MIEGHEM P. Burst of virus infection and a possibly largest epidemic threshold of non-Markovian susceptible-infected-susceptible processes on networks[J]. Physical Review E, 2018, 97(2):No.022309. [6] SHAKYA R K. Modified SI epidemic model for combating virus spread in spatially correlated wireless sensor networks[EB/OL].[2018-06-20]. https://arxiv.org/pdf/1801.04744.pdf. [7] BOGUÑÁ M, CASTELLANO C, PASTOR-SATORRAS R. Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks[J]. Physical Review Letters, 2013, 111(6):No.068701. [8] ANITA S, AINSEBA B. Internal eradicability for an epidemiological model with diffusion[J]. Mathematical Biosciences and Engineering, 2005, 2(3):437-443. [9] LI H, ZHANG L, TENG Z, et al. Global stability of an SI epidemic model with feedback controls in a patchy environment[J]. Applied Mathematics and Computation, 2018, 321:372-384. [10] WEI X, XU G, ZHOU W. Global stability of an SIS epidemic model with feedback mechanism on networks[J]. Advances in Difference Equations, 2018, 2018:No.60. [11] YUAN X, WANG F, XUE Y, et al. Global stability of an SIR model with differential infectivity on complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2018, 499:443-456. [12] CHEN L, SUN J. Global stability and optimal control of an SIRS epidemic model on heterogeneous networks[J]. Physica A:Statistical Mechanics and its Applications, 2014, 410:196-204. [13] 巩永旺,宋玉蓉,蒋国平. 移动环境下网络病毒传播模型及其稳定性研究[J]. 物理学报, 2012, 61(11):46-54. (GONG Y W, SONG Y R, JIANG G P. Epidemic spreading model and stability of the networks in mobile environment[J]. Acta Physica Sinica, 2012, 61(11):46-54.) [14] QIN Y, ZHONG X, JIANG H, et al. An environment aware epidemic spreading model and immune strategy in complex networks[J]. Applied Mathematics and Computation, 2015, 261(C):206-215. [15] 曹玉林,王小明,何早波. 移动无线传感网中恶意软件传播的最优安全策略[J]. 电子学报, 2016, 44(8):1851-1857. (CAO Y L, WANG X M, HE Z B. Optimal security strategy for malware propagation in mobile wireless sensor networks[J]. Acta Electronica Sinica, 2016, 44(8):1851-1857.) [16] BETTSTETTER C. Mobility modeling in wireless networks:categorization, smooth movement, and border effects[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(3):55-66. [17] CLARK R N. The Routh-Hurwitz stability criterion, revisited[J]. IEEE Control Systems Magazine, 1992, 12(3):119-120. [18] LAVRETSKY E, WISE K A. Robust and Adaptive Control with Aerospace Applications[M]. London:Springer, 2013:225-261. |