[1] 黄世强. 混凝土坝结构缺陷检测技术进展和展望[J]. 大坝与安全,2016(3):1-9.(HUANG S Q. Development and prospect of defect detection technology for concrete dams[J]. Dam and Safety, 2016(3):1-9.) [2] 陈华, 陈方. Scansites 3D技术用于大坝监测的探讨[J]. 水利建设与管理, 2014, 34(12):58-61. (CHEN H, CHEN F. Discussion on applying Scansites 3D technology in dam monitoring[J]. Water Conservancy Construction and Management,2014,34(12):58-61.) [3] 李海强, 苏强. 关于水库大坝安全监测自动化技术的探讨[J]. 四川建材,2019,45(6):220-221.(LI H Q,SU Q. Discussion on reservoir dam safety monitoring automation technology[J]. Sichuan Building Materials,2019,45(6):220-221.) [4] JIAO L C,ZHANG F,LIU F,et al. A survey of deep learningbased object detection[J]. IEEE Access, 2019, 7:128837-128868. [5] DAI J F,LI Y,HE K M,et al. R-FCN:object detection via regionbased fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2016:379-387. [6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE Conference on Computer Vision. Piscataway:IEEE,2015:1440-1448. [7] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [8] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [9] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [10] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2020-04-30]. https://arxiv.org/pdf/1804.02767.pdf. [11] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot MultiBox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [12] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327. [13] DAI J F,QI H Z,XIONG Y W,et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:764-773. [14] 黄二位, 张今阳. SCANSITES系统在水库大坝表面缺陷检测中的应用[J]. 治淮,2007(10):30-31.(HUANG E W,ZHANG J Y. Application of SCANSITES system in surface defect detection of reservoir dam[J]. Harnessing the Huaihe River,2007(10):30-31.) [15] 唐聪, 凌永顺, 郑科栋, 等. 基于深度学习的多视窗SSD目标检测方法[J]. 红外与激光工程,2018,47(1):No. 0126003. (TANG C,LING Y S,ZHENG K D,et al. Object detection method of multi-view SSD based on deep learning[J]. Infrared and Laser Engineering,2018,47(1):No. 0126003.) [16] 关于印发《水电站大坝安全注册办法》 和《水电站大坝安全定期检查办法》的通知[J]. 中华人民共和国国务院公报,2006(27):43-48.(Notice on the issuance of "Measures for Dam Safety Registration of Hydropower Stations" and "Measures for Periodic Inspection of Dam Safety for Hydropower Stations"[J]. Gazette of the State Council of the People's Republic of China,2006(27):43-48.) [17] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-09-04]. https://arxiv.org/pdf/1409.1556.pdf. [18] JADERBERG M,SIMONYAN K,ZISSERMAN A,et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:2017-2025. [19] SALSCHEIDER N O. FeatureNMS:non-maximum suppression by learning feature embeddings[EB/OL]. (2020-10-12)[2020-12-18]. https://arxiv.org/pdf/2002.07662.pdf. [20] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:580-587. |