Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (5): 1557-1564.DOI: 10.11772/j.issn.1001-9081.2022040554
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Hui LIU1,2, Linyu ZHANG1,2( ), Fugang WANG1,2, Rujin HE1,2
), Fugang WANG1,2, Rujin HE1,2
												  
						
						
						
					
				
Received:2022-04-19
															
							
																	Revised:2022-06-20
															
							
																	Accepted:2022-06-22
															
							
							
																	Online:2022-07-11
															
							
																	Published:2023-05-10
															
							
						Contact:
								Linyu ZHANG   
													About author:LIU Hui, born in 1966, M. S., senior engineer. His research interests include computer vision, new technology of communication network, telecommunication system service.
        
                   
            刘辉1,2, 张琳玉1,2( ), 王复港1,2, 何如瑾1,2
), 王复港1,2, 何如瑾1,2
                  
        
        
        
        
    
通讯作者:
					张琳玉
							作者简介:刘辉(1966—),男,四川仪陇人,高级工程师,硕士,主要研究方向:计算机视觉、通信网络新技术、电信系统业务CLC Number:
Hui LIU, Linyu ZHANG, Fugang WANG, Rujin HE. Object detection algorithm based on attention mechanism and context information[J]. Journal of Computer Applications, 2023, 43(5): 1557-1564.
刘辉, 张琳玉, 王复港, 何如瑾. 基于注意力机制和上下文信息的目标检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1557-1564.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022040554
| 配置项 | 训练 | 测试 | 
|---|---|---|
| 编程语言 | Python | Python | 
| 深度学习框架 | Pytorch1.8.0 | Pytorch1.8.0 | 
| 操作系统 | Windows 10 | Windows 10 | 
| CPU | Core i9-10980XE | Core i5-11400F | 
| 内存 | 128 GB | 16 GB | 
| GPU | Nvidia RTX 3080 | Nvidia RTX3060 | 
| CUDA | 11.1 | 11.1 | 
Tab. 1 Experimental environment configuration
| 配置项 | 训练 | 测试 | 
|---|---|---|
| 编程语言 | Python | Python | 
| 深度学习框架 | Pytorch1.8.0 | Pytorch1.8.0 | 
| 操作系统 | Windows 10 | Windows 10 | 
| CPU | Core i9-10980XE | Core i5-11400F | 
| 内存 | 128 GB | 16 GB | 
| GPU | Nvidia RTX 3080 | Nvidia RTX3060 | 
| CUDA | 11.1 | 11.1 | 
| 算法 | mAP/% | FPS | 
|---|---|---|
| YOLOv5 | 79.10 | 108 | 
| YOLOv5+MDSCM | 80.00 | 91 | 
| YOLOv5+CA | 81.10 | 108 | 
| YOLOv5+GCA | 81.40 | 108 | 
| YOLOv5+Soft-NMS | 79.60 | 104 | 
| YOLOv5+MDSCM+GCA | 81.70 | 91 | 
| YOLOv5+MDSCM+Soft-NMS | 80.90 | 90 | 
| YOLOv5+GCA+Soft-NMS | 82.00 | 106 | 
| AC-YOLO | 82.80 | 90 | 
Tab. 2 Ablation experimental results on PASCAL VOC dataset
| 算法 | mAP/% | FPS | 
|---|---|---|
| YOLOv5 | 79.10 | 108 | 
| YOLOv5+MDSCM | 80.00 | 91 | 
| YOLOv5+CA | 81.10 | 108 | 
| YOLOv5+GCA | 81.40 | 108 | 
| YOLOv5+Soft-NMS | 79.60 | 104 | 
| YOLOv5+MDSCM+GCA | 81.70 | 91 | 
| YOLOv5+MDSCM+Soft-NMS | 80.90 | 90 | 
| YOLOv5+GCA+Soft-NMS | 82.00 | 106 | 
| AC-YOLO | 82.80 | 90 | 
| 网络 | 尺寸大小 | mAP/% | FPS | 
|---|---|---|---|
| Faster RCNN | 640×640 | 73.32 | 5 | 
| SSD | 640×640 | 77.66 | 54 | 
| YOLOv3 | 640×640 | 72.34 | 60 | 
| Tiny-YOLOv3 | 640×640 | 73.28 | 91 | 
| YOLOv5 | 640×640 | 79.10 | 108 | 
| AC-YOLO | 640×640 | 82.80 | 90 | 
Tab. 3 Performance comparison of different networks on PASCAL VOC dataset
| 网络 | 尺寸大小 | mAP/% | FPS | 
|---|---|---|---|
| Faster RCNN | 640×640 | 73.32 | 5 | 
| SSD | 640×640 | 77.66 | 54 | 
| YOLOv3 | 640×640 | 72.34 | 60 | 
| Tiny-YOLOv3 | 640×640 | 73.28 | 91 | 
| YOLOv5 | 640×640 | 79.10 | 108 | 
| AC-YOLO | 640×640 | 82.80 | 90 | 
| 类别 | AP(IoU=0.5) | |||
|---|---|---|---|---|
| YOLOv3 | SSD | YOLOv5 | 本文算法 | |
| Aero | 81.20 | 75.50 | 87.70 | 89.20 | 
| Bike | 80.30 | 80.20 | 89.30 | 91.00 | 
| Bird | 74.00 | 72.30 | 74.30 | 80.80 | 
| Boat | 65.50 | 66.30 | 70.80 | 73.90 | 
| Bottle | 64.10 | 47.60 | 71.60 | 71.80 | 
| Bus | 81.50 | 83.00 | 85.50 | 89.60 | 
| Car | 82.20 | 84.20 | 91.70 | 92.00 | 
| Cat | 83.10 | 86.10 | 83.20 | 89.70 | 
| Chair | 61.23 | 54.70 | 61.90 | 67.70 | 
| Cow | 77.30 | 78.30 | 82.00 | 85.90 | 
| Table | 75.20 | 73.90 | 73.80 | 77.50 | 
| Dog | 82.20 | 84.50 | 81.00 | 88.00 | 
| Horse | 84.69 | 85.30 | 87.90 | 91.40 | 
| Mbike | 81.29 | 82.60 | 86.60 | 89.10 | 
| Person | 78.46 | 76.20 | 86.60 | 88.50 | 
| Plant | 52.18 | 48.60 | 52.40 | 57.80 | 
| Sheep | 77.52 | 73.90 | 81.70 | 84.70 | 
| Sofa | 74.41 | 76.00 | 70.80 | 78.20 | 
| Train | 81.66 | 83.40 | 83.50 | 87.30 | 
| TV | 71.99 | 74.00 | 79.80 | 82.00 | 
Tab. 4 Comparison of precisions under different network structures on each category of PASCAL VOC dataset
| 类别 | AP(IoU=0.5) | |||
|---|---|---|---|---|
| YOLOv3 | SSD | YOLOv5 | 本文算法 | |
| Aero | 81.20 | 75.50 | 87.70 | 89.20 | 
| Bike | 80.30 | 80.20 | 89.30 | 91.00 | 
| Bird | 74.00 | 72.30 | 74.30 | 80.80 | 
| Boat | 65.50 | 66.30 | 70.80 | 73.90 | 
| Bottle | 64.10 | 47.60 | 71.60 | 71.80 | 
| Bus | 81.50 | 83.00 | 85.50 | 89.60 | 
| Car | 82.20 | 84.20 | 91.70 | 92.00 | 
| Cat | 83.10 | 86.10 | 83.20 | 89.70 | 
| Chair | 61.23 | 54.70 | 61.90 | 67.70 | 
| Cow | 77.30 | 78.30 | 82.00 | 85.90 | 
| Table | 75.20 | 73.90 | 73.80 | 77.50 | 
| Dog | 82.20 | 84.50 | 81.00 | 88.00 | 
| Horse | 84.69 | 85.30 | 87.90 | 91.40 | 
| Mbike | 81.29 | 82.60 | 86.60 | 89.10 | 
| Person | 78.46 | 76.20 | 86.60 | 88.50 | 
| Plant | 52.18 | 48.60 | 52.40 | 57.80 | 
| Sheep | 77.52 | 73.90 | 81.70 | 84.70 | 
| Sofa | 74.41 | 76.00 | 70.80 | 78.20 | 
| Train | 81.66 | 83.40 | 83.50 | 87.30 | 
| TV | 71.99 | 74.00 | 79.80 | 82.00 | 
| 类别 | AP(IoU=0.5) | |||
|---|---|---|---|---|
| YOLOv3 | SSD | YOLOv5 | 本文算法 | |
| mAP | 67.97 | 41.98 | 70.25 | 71.74 | 
| Small- vehicle | 66.80 | 10.05 | 66.30 | 67.80 | 
| Large-vehicle | 81.70 | 50.20 | 83.60 | 85.90 | 
| Plane | 86.20 | 64.70 | 90.80 | 91.80 | 
| Storage-tank | 69.90 | 57.90 | 69.70 | 74.90 | 
| Ship | 84.30 | 31.30 | 86.80 | 88.10 | 
| Harbor | 80.50 | 80.50 | 84.00 | 82.20 | 
| Ground track-field | 56.70 | 24.90 | 61.90 | 59.30 | 
| Soccer ball field | 51.70 | 22.70 | 52.50 | 55.60 | 
| Tennis-court | 89.40 | 85.50 | 94.00 | 93.40 | 
| Swimming pool | 60.30 | 18.50 | 62.90 | 64.10 | 
| Baseball diamond | 73.60 | 38.20 | 76.90 | 74.00 | 
| Roundabout | 50.30 | 44.50 | 58.00 | 59.40 | 
| Basketball court | 60.40 | 62.50 | 64.40 | 66.20 | 
| Bridge | 46,10 | 26.20 | 47.80 | 50.40 | 
| Helicopter | 51.80 | 12.10 | 54.20 | 63.00 | 
Tab. 5 Comparison of precisions under different network structures on each category of DOTA dataset
| 类别 | AP(IoU=0.5) | |||
|---|---|---|---|---|
| YOLOv3 | SSD | YOLOv5 | 本文算法 | |
| mAP | 67.97 | 41.98 | 70.25 | 71.74 | 
| Small- vehicle | 66.80 | 10.05 | 66.30 | 67.80 | 
| Large-vehicle | 81.70 | 50.20 | 83.60 | 85.90 | 
| Plane | 86.20 | 64.70 | 90.80 | 91.80 | 
| Storage-tank | 69.90 | 57.90 | 69.70 | 74.90 | 
| Ship | 84.30 | 31.30 | 86.80 | 88.10 | 
| Harbor | 80.50 | 80.50 | 84.00 | 82.20 | 
| Ground track-field | 56.70 | 24.90 | 61.90 | 59.30 | 
| Soccer ball field | 51.70 | 22.70 | 52.50 | 55.60 | 
| Tennis-court | 89.40 | 85.50 | 94.00 | 93.40 | 
| Swimming pool | 60.30 | 18.50 | 62.90 | 64.10 | 
| Baseball diamond | 73.60 | 38.20 | 76.90 | 74.00 | 
| Roundabout | 50.30 | 44.50 | 58.00 | 59.40 | 
| Basketball court | 60.40 | 62.50 | 64.40 | 66.20 | 
| Bridge | 46,10 | 26.20 | 47.80 | 50.40 | 
| Helicopter | 51.80 | 12.10 | 54.20 | 63.00 | 
| 类别 | AP(IoU=0.5) | |||
|---|---|---|---|---|
| YOLOv3 | SSD | YOLOv5 | 本文算法 | |
| mAP | 58.63 | 51.58 | 74.63 | 77.11 | 
| Airplane | 59.60 | 49.40 | 89.10 | 93.10 | 
| Airport | 72.70 | 63.10 | 78.10 | 80.90 | 
| Baseball field | 73.40 | 66.60 | 81.90 | 79.90 | 
| Basketball court | 75.70 | 71.10 | 80.00 | 84.40 | 
| Bridge | 29.70 | 26.50 | 69.20 | 76.00 | 
| Chimney | 65.60 | 63.30 | 89.70 | 81.70 | 
| Dam | 56.60 | 54.30 | 73.10 | 77.10 | 
| Expressway service area | 63.50 | 62.70 | 70.50 | 67.60 | 
| Expressway toll station | 53.10 | 46.60 | 58.50 | 70.00 | 
| Golf course | 65.30 | 64.40 | 70.30 | 66.70 | 
| Ground track field | 68.60 | 53.10 | 66.20 | 75.70 | 
| Harbor | 49.40 | 44.20 | 69.30 | 75.50 | 
| Overpass | 48.10 | 35.70 | 78.80 | 76.70 | 
| Ship | 59.20 | 58.30 | 80.30 | 87.00 | 
| Stadium | 61.00 | 41.10 | 60.90 | 65.80 | 
| Storage tank | 46.60 | 72.60 | 70.40 | 70.10 | 
| Tennis court | 76.30 | 37.50 | 85.20 | 88.70 | 
| Train station | 55.10 | 22.70 | 66.80 | 63.50 | 
| Vehicle | 27.40 | 47.10 | 76.70 | 81.20 | 
| Wind mill | 65.70 | 51.20 | 77.50 | 80.50 | 
Tab. 6 Comparison of precisionsunder different network structures on each category of DIOR dataset
| 类别 | AP(IoU=0.5) | |||
|---|---|---|---|---|
| YOLOv3 | SSD | YOLOv5 | 本文算法 | |
| mAP | 58.63 | 51.58 | 74.63 | 77.11 | 
| Airplane | 59.60 | 49.40 | 89.10 | 93.10 | 
| Airport | 72.70 | 63.10 | 78.10 | 80.90 | 
| Baseball field | 73.40 | 66.60 | 81.90 | 79.90 | 
| Basketball court | 75.70 | 71.10 | 80.00 | 84.40 | 
| Bridge | 29.70 | 26.50 | 69.20 | 76.00 | 
| Chimney | 65.60 | 63.30 | 89.70 | 81.70 | 
| Dam | 56.60 | 54.30 | 73.10 | 77.10 | 
| Expressway service area | 63.50 | 62.70 | 70.50 | 67.60 | 
| Expressway toll station | 53.10 | 46.60 | 58.50 | 70.00 | 
| Golf course | 65.30 | 64.40 | 70.30 | 66.70 | 
| Ground track field | 68.60 | 53.10 | 66.20 | 75.70 | 
| Harbor | 49.40 | 44.20 | 69.30 | 75.50 | 
| Overpass | 48.10 | 35.70 | 78.80 | 76.70 | 
| Ship | 59.20 | 58.30 | 80.30 | 87.00 | 
| Stadium | 61.00 | 41.10 | 60.90 | 65.80 | 
| Storage tank | 46.60 | 72.60 | 70.40 | 70.10 | 
| Tennis court | 76.30 | 37.50 | 85.20 | 88.70 | 
| Train station | 55.10 | 22.70 | 66.80 | 63.50 | 
| Vehicle | 27.40 | 47.10 | 76.70 | 81.20 | 
| Wind mill | 65.70 | 51.20 | 77.50 | 80.50 | 
| 1 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceeding of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:580-587. 10.1109/cvpr.2014.81 | 
| 2 | GIRSHICK R. Fast R-CNN[C]// Proceeding of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1440-1448. 10.1109/iccv.2015.169 | 
| 3 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 | 
| 4 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 | 
| 5 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-04-18].. 10.1109/cvpr.2017.690 | 
| 6 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. | 
| 7 | ZHANG S, WEN L, BIAN X, et al. Single-shot refinement neural network for object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4203-4212. 10.1109/cvpr.2018.00442 | 
| 8 | LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]// Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2021: 181-186. 10.1109/icaiic51459.2021.9415217 | 
| 9 | 许腾,唐贵进,刘清萍,等. 基于空洞卷积和Focal Loss的改进YOLOv3算法[J]. 南京邮电大学学报(自然科学版), 2020, 40(6):100-108. 10.14132/j.cnki.1673-5439.2020.06.015 | 
| XU T, TANG G J, LIU Q P, et al. Improved YOLOv3 based on dilated convolution and Focal Loss[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2020, 40(6):100-108. 10.14132/j.cnki.1673-5439.2020.06.015 | |
| 10 | CAO G M, XIE X M, YANG W Z, et al. Feature-fused SSD: fast detection for small objects[C]// Proceedings of the 9th International Conference on Graphic and Image Processing. Bellingham, WA: SPIE, 2018: No.106151E. 10.1117/12.2304811 | 
| 11 | 董如婵,焦李成,赵进,等. 一种深度融合机制的遥感图像目标检测技术[J]. 西安电子科技大学学报, 2021, 48(5): 128-138. | 
| DONG R C, JIAO L C, ZHAO J, et al. Application of the deep fusion mechanism in object detection of remote sensing images[J]. Journal of Xidian University, 2021, 48(5):128-138. | |
| 12 | 马巧梅,王明俊,梁昊然. 复杂场景下基于改进YOLOv3的车牌定位检测算法[J]. 计算机工程与应用, 2021, 57(7):198-208. 10.3778/j.issn.1002-8331.2008-0137 | 
| MA Q M, WANG M J, LIANG H R. License plate location detection algorithm based on improved YOLOv3 in complex scenes[J]. Computer Engineering and Applications, 2021, 57(7):198-208. 10.3778/j.issn.1002-8331.2008-0137 | |
| 13 | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 | 
| 14 | ZHANG F, JIAO L C, LI L L, et al. Multiresolution attention extractor for small object detection[EB/OL]. (2020-06-10) [2022-04-18].. 10.48550/arXiv.2006.05941 | 
| 15 | Ultralytics. YOLOv5[EB/OL]. [2022-01-18].. 10.1117/1.jei.31.3.033033 | 
| 16 | XU B Q, JIANG G W, LIU J H, et al. Aircraft rotated boxes detection method based on YOLOv5[C]// Proceedings of the 4th International Conference on Pattern Recognition and Artificial Intelligence. Piscataway: IEEE, 2021: 390-394. 10.1109/prai53619.2021.9551072 | 
| 17 | WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580. 10.1109/cvprw50498.2020.00203 | 
| 18 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. 10.1109/tpami.2015.2389824 | 
| 19 | LIN T Y, DOLLÁR P, GIRSHISICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 | 
| 20 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. 10.1109/cvpr.2018.00913 | 
| 21 | CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13034-13043. 10.1109/cvpr46437.2021.01284 | 
| 22 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05) [2022-04-06].. 10.1007/978-3-030-01234-2_49 | 
| 23 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 | 
| 24 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. | 
| 25 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722. 10.1109/cvpr46437.2021.01350 | 
| 26 | JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11218. Cham: Springer, 2018: 816-832. | 
| 27 | NING C C, ZHOU H J, SONG Y, et al. Inception single shot multiBox detector for object detection[C]// Proceedings of the 2017 IEEE International Conference on Multimedia and Expo Workshops. Piscataway: IEEE, 2017: 549-554. 10.1109/icmew.2017.8026312 | 
| 28 | BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS - improving object detection with one line of code[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5562-5570. 10.1109/iccv.2017.593 | 
| 29 | WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460. 10.1109/wacv.2018.00163 | 
| 30 | EVERINGHAM M, ESLAMI S M A, van GOOL L, et al. The PASCAL Visual Object Classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136. 10.1007/s11263-014-0733-5 | 
| 31 | XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3974-3983. 10.1109/cvpr.2018.00418 | 
| 32 | LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. 10.1016/j.isprsjprs.2019.11.023 | 
| [1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [3] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [4] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [5] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. | 
| [6] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. | 
| [7] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [8] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [9] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [10] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [11] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [12] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [13] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [14] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| [15] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||