Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1785-1795.DOI: 10.11772/j.issn.1001-9081.2022050766
• Artificial intelligence • Previous Articles Next Articles
Yichi CHEN1,2, Bin CHEN2,3,4()
Received:
2022-05-27
Revised:
2022-09-27
Accepted:
2022-10-13
Online:
2023-06-08
Published:
2023-06-10
Contact:
Bin CHEN
About author:
CHEN Yichi, born in 1997, Ph. D. candidate. His research interests include computer vision, lifelong learning.
Supported by:
通讯作者:
陈斌
作者简介:
陈一驰(1997—),男,湖南岳阳人,博士研究生,主要研究方向:计算机视觉、终身学习CLC Number:
Yichi CHEN, Bin CHEN. Review of lifelong learning in computer vision[J]. Journal of Computer Applications, 2023, 43(6): 1785-1795.
陈一驰, 陈斌. 计算机视觉中的终身学习综述[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1785-1795.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050766
主要方法 | 子方法 |
---|---|
基于数据驱动的终身学习 | 存储任务子集 |
生成任务数据 | |
基于优化过程的终身学习 | 损失函数设计 |
梯度更新 | |
学习率更新 | |
基于网络结构的终身学习 | 静态结构 |
动态结构 | |
基于知识组合的终身学习 | 以上方法的组合 |
Tab. 1 Classification of lifelong learning methods
主要方法 | 子方法 |
---|---|
基于数据驱动的终身学习 | 存储任务子集 |
生成任务数据 | |
基于优化过程的终身学习 | 损失函数设计 |
梯度更新 | |
学习率更新 | |
基于网络结构的终身学习 | 静态结构 |
动态结构 | |
基于知识组合的终身学习 | 以上方法的组合 |
1 | CHEN Z Y, LIU B. Lifelong Machine Learning, SLAIML [M]. 2nd ed. Cham: Springer, 2018: 1-207. 10.2200/s00832ed1v01y201802aim037 |
2 | GOODFELLOW I J, MIRZA M, XIAO D, et al. An empirical investigation of catastrophic forgetting in gradient-based neural networks [EB/OL]. (2015-03-04) [2022-09-23].. |
3 | GAMA J, ŽLIOBAITĖ I, BIFET A, et al. A survey on concept drift adaptation [J]. ACM Computing Surveys, 2014, 46(4): No.44. 10.1145/2523813 |
4 | MERMILLOD M, BUGAISKA A, BONIN P. The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects[J]. Frontiers in Psychology, 2013, 4: No.504. 10.3389/fpsyg.2013.00504 |
5 | PARISI G I, KEMKER R, PART J L, et al. Continual lifelong learning with neural networks: a review[J]. Neural Networks, 2019, 113: 54-71. 10.1016/j.neunet.2019.01.012 |
6 | QU H X, RAHMANI H, XU L, et al. Recent advances of continual learning in computer vision: an overview [EB/OL]. (2021-09-24) [2022-09-26].. |
7 | DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: defying forgetting in classification tasks [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2022, 44(7): 3366-3385. |
8 | MASANA M, LIU X L, TWARDOWSKI B, et al. Class-incremental learning: survey and performance evaluation on image classification [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2023, 45(5): 5513-5533. |
9 | REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5533-5542. 10.1109/cvpr.2017.587 |
10 | CHAUDHRY A, ROHRBACH M, ELHOSEINY M, et al. On tiny episodic memories in continual learning [EB/OL]. (2019-06-04) [2022-09-23].. |
11 | BUZZEGA P, BOSCHINI M, PORRELLO A, et al. Rethinking experience replay: a bag of tricks for continual learning[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 2180-2187. 10.1109/icpr48806.2021.9412614 |
12 | ALJUNDI R, CACCIA L, BELILOVSKY E, et al. Online continual learning with maximally interfered retrieval[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 11872-11883. 10.1109/cvpr.2019.01151 |
13 | BELOUADAH E, POPESCU A. IL2M: class incremental learning with dual memory[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 583-592. 10.1109/iccv.2019.00067 |
14 | CHAUDHRY A, GORDO A, DOKANIA P, et al. Using hindsight to anchor past knowledge in continual learning[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 6993-7001. 10.1609/aaai.v35i8.16861 |
15 | ISCEN A, ZHANG J, LAZEBNIK S, et al. Memory-efficient incremental learning through feature adaptation [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 699-715. |
16 | ZHU F, ZHANG X Y, WANG C, et al. Prototype augmentation and self-supervision for incremental learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5867-5876. 10.1109/cvpr46437.2021.00581 |
17 | HE C, WANG R P, CHEN X L. A tale of two CILs: the connections between class incremental learning and class imbalanced learning, and beyond [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3554-3564. 10.1109/cvprw53098.2021.00395 |
18 | KORYCKI Ł, KRAWCZYK B. Class-incremental experience replay for continual learning under concept drift [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3644-3653. 10.1109/cvprw53098.2021.00404 |
19 | MAI Z D, LI R W, KIM H, et al. Supervised contrastive replay: revisiting the nearest class mean classifier in online class-incremental continual learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3584-3594. 10.1109/cvprw53098.2021.00398 |
20 | SHIN H, LEE J K, KIM J, et al. Continual learning with deep generative replay[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 2994-3003. |
21 | ATKINSON C, McCANE B, SZYMANSKI L, et al. Pseudo-recursal: solving the catastrophic forgetting problem in deep neural networks[EB/OL]. (2018-05-07) [2022-09-23].. 10.1016/j.neucom.2020.11.050 |
22 | van de VEN G M, TOLIAS A S. Generative replay with feedback connections as a general strategy for continual learning[EB/OL]. (2019-04-17) [2022-09-23].. |
23 | CONG Y L, ZHAO M Y, LI J Q, et al. GAN memory with no forgetting [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 16481-16494. |
24 | PEREZ E, STRUB F, DE VRIES H, et al. FiLM: visual reasoning with a general conditioning layer [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3942-3951. 10.1609/aaai.v32i1.11671 |
25 | ZHAO M Y, CONG Y L, CARIN L. On leveraging pretrained GANs for generation with limited data [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 11340-11351. |
26 | RAMAPURAM J, GREGOROVA M, KALOUSIS A. Lifelong generative modeling [J]. Neurocomputing, 2020, 404: 381-400. 10.1016/j.neucom.2020.02.115 |
27 | YE F, BORS A G. Learning latent representations across multiple data domains using lifelong VAEGAN[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12365. Cham: Springer, 2020: 777-795. |
28 | LESORT T, CASELLES-DUPRÉ H, GARCIA-ORTIZ M, et al. Generative models from the perspective of continual learning [C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. 10.1109/ijcnn.2019.8851986 |
29 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5769-5779. |
30 | KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526. 10.1073/pnas.1611835114 |
31 | CHAUDHRY A, DOKANIA P K, AJANTHAN T, et al. Riemannian walk for incremental learning: understanding forgetting and intransigence[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11215. Cham: Springer, 2018: 556-572. |
32 | RITTER H, BOTEV A, BARBER D. Online structured Laplace approximations for overcoming catastrophic forgetting[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 3742-3752. |
33 | ZENKE F, POOLE B, GANGULI S. Continual learning through synaptic intelligence [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 3987-3995. 10.1007/978-1-4899-7687-1_171 |
34 | ALJUNDI R, BABILONI F, ELHOSEINY M, et al. Memory aware synapses: learning what (not) to forget [C]// Proceedings of the 2018 European Conference on Computer Vision. LNCS 11207. Cham: Springer, 2018: 144-161. |
35 | REN M Y, LIAO R J, FETAYA E, et al. Incremental few-shot learning with attention attractor networks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 5275-5285. |
36 | HU W P, QIN Q, WANG M Y, et al. Continual learning by using information of each class holistically [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 7797-7805. 10.1609/aaai.v35i9.16952 |
37 | LI Z Z, HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935-2947. 10.1109/tpami.2017.2773081 |
38 | RANNEN A, ALJUNDI R, BLASCHKO M B, et al. Encoder based lifelong learning[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1329-1337. 10.1109/iccv.2017.148 |
39 | DHAR P, SINGH R V, PENG K C, et al. Learning without memorizing [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5133-5141. 10.1109/cvpr.2019.00528 |
40 | DOUILLARD A, CORD M, OLLION C, et al. PODNet: pooled outputs distillation for small-tasks incremental learning[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12365. Cham: Springer, 2020: 86-102. |
41 | CHA H, LEE J, SHIN J. Co2 L: contrastive continual learning[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9496-9505. 10.1109/iccv48922.2021.00938 |
42 | LOPEZ-PAZ D, RANZATO M. Gradient episodic memory for continual learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6470-6479. |
43 | CHAUDHRY A, RANZATO M, ROHRBACH M, et al. Efficient lifelong learning with A-GEM [EB/OL]. (2019-01-09) [2022-09-23].. |
44 | GUO Y H, LIU M R, YANG T B, et al. Improved schemes for episodic memory-based lifelong learning [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 1023-1035. |
45 | TANG S X, CHEN D P, ZHU J G, et al. Layerwise optimization by gradient decomposition for continual learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9629-9638. 10.1109/cvpr46437.2021.00951 |
46 | FARAJTABAR M, AZIZAN N, MOTT A, et al. Orthogonal gradient descent for continual learning[C]// Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2020: 3762-3773. 10.1109/taai54685.2021.00034 |
47 | SAHA G, GARG I, ROY K. Gradient projection memory for continual learning [EB/OL]. (2021-03-17) [2022-09-23].. |
48 | EBRAHIMI S, ELHOSEINY M, DARRELL T, et al. Uncertainty-guided continual learning with Bayesian neural networks [EB/OL].(2020-02-20) [2022-09-23].. |
49 | FERNANDO C, BANARSE D, BLUNDELL C, et al. PathNet: evolution channels gradient descent in super neural networks [EB/OL].(2017-01-30)[2022-09-23].. |
50 | RAJASEGARAN J, HAYAT M, KHAN S, et al. Random path selection for incremental learning [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 12669-12679. 10.1109/cvpr42600.2020.01360 |
51 | MALLYA A, LAZEBNIK S. PackNet: adding multiple tasks to a single network by iterative pruning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7765-7773. 10.1109/cvpr.2018.00810 |
52 | SERRA J, SURIS D, MIRON M, et al. Overcoming catastrophic forgetting with hard attention to the task [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 4548-4557. |
53 | MALLYA A, DAVIS D, LAZEBNIK S. Piggyback: adapting a single network to multiple tasks by learning to mask weights [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham: Springer, 2018: 72-88. |
54 | HURTADO J, RAYMOND-SAEZ A, SOTO A. Optimizing reusable knowledge for continual learning via metalearning [C/OL]// Proceedings of the 35th Conference on Neural Information Processing Systems [2022-09-23].. 10.48550/arXiv.2106.05390 |
55 | ABATI D, TOMCZAK J, BLANKEVOORT T, et al. Conditional channel gated networks for task-aware continual learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3930-3939. 10.1109/cvpr42600.2020.00399 |
56 | MAZUMDER P, SINGH P, RAI P. Few-shot lifelong learning[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 2337-2345. 10.1609/aaai.v35i3.16334 |
57 | RUSU A A, RABINOWITZ N C, DESJARDINS G, et al. Progressive neural networks[EB/OL]. (2022-10-22) [2022-11-23]. . |
58 | ALJUNDI R, CHAKRAVARTY P, TUYTELAARS T. Expert gate: lifelong learning with a network of experts [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7120-7129. 10.1109/cvpr.2017.753 |
59 | YOON J, YANG E, LEE J, et al. Lifelong learning with dynamically expandable networks [EB/OL]. (2018-06-11) [2022-09-23].. |
60 | XU J, ZHU Z X. Reinforced continual learning [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 907-916. 10.7551/mitpress/11474.003.0014 |
61 | LI X L, ZHOU Y B, WU T F, et al. Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 3925-3934. |
62 | LEE S, STOKES J, EATON E. Learning shared knowledge for deep lifelong learning using deconvolutional networks[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 2837-2844. 10.24963/ijcai.2019/393 |
63 | YOON J, KIM S, YANG E, et al. Scalable and order-robust continual learning with additive parameter decomposition[EB/OL]. (2020-02-15) [2022-09-23].. |
64 | SINGH P, VERMA V K, MAZUMDER P, et al. Calibrating CNNs for lifelong learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 15579-15590. |
65 | KUO N I H, HARANDI M, FOURRIER N, et al. Plastic and stable gated classifiers for continual learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3548-3553. 10.1109/cvprw53098.2021.00394 |
66 | NGUYEN C V, LI Y Z, BUI T D, et al. Variational continual learning [EB/OL]. (2018-05-20) [2022-09-23].. |
67 | CASTRO F M, MARÍN-JIMÉNEZ M J, GUIL N, et al. End-to-end incremental learning [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11216. Cham: Springer, 2018: 241-257. |
68 | HOU S H, PAN X Y, LOY C C, et al. Lifelong learning via progressive distillation and retrospection [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11207. Cham: Springer, 2018: 452-467. |
69 | 李国锋. 深度神经网络模型持续学习能力的研究[D]. 成都:电子科技大学, 2021:24-53. |
LI G F. The research on continual learning ability of deep neural network model[D]. Chengdu: University of Electronic Science and Technology of China, 2021:24-53. | |
70 | WU Y, CHEN Y P, WANG L J, et al. Incremental classifier learning with generative adversarial networks [EB/OL]. (2018-02-02) [2022-09-23].. |
71 | HE C, WANG R P, SHAN S G, et al. Exemplar-supported generative reproduction for class incremental learning[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.98. |
72 | ACHILLE A, ECCLES T, MATTHEY L, et al. Life-long disentangled representation learning with cross-domain latent homologies [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 9895-9905. |
73 | OSTAPENKO O, PUSCAS M, KLEIN T, et al. Learning to remember: a synaptic plasticity driven framework for continual learning [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11313-11321. 10.1109/cvpr.2019.01158 |
74 | YANG Y, ZHOU D W, ZHAN D C, et al. Adaptive deep models for incremental learning: considering capacity scalability and sustainability[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 74-82. 10.1145/3292500.3330865 |
75 | GUPTA G, YADAV K, PAULL L. La-MAML: look-ahead meta learning for continual learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 11588-11598. |
76 | CHOI Y, EL-KHAMY M, LEE J. Dual-teacher class-incremental learning with data-free generative replay [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3538-3547. 10.1109/cvprw53098.2021.00393 |
77 | SHMELKOV K, SCHMID C, ALAHARI K. Incremental learning of object detectors without catastrophic forgetting [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3420-3429. 10.1109/iccv.2017.368 |
78 | PÉREZ-RÚA J M, ZHU X T, HOSPEDALES T M, et al. Incremental few-shot object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13843-13852. 10.1109/cvpr42600.2020.01386 |
79 | JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5826-5836. 10.1109/cvpr46437.2021.00577 |
80 | ZHOU W, CHANG S Y, SOSA N, et al. Lifelong object detection[EB/OL]. (2020-09-02) [2022-09-23].. |
81 | LIU X L, YANG H, RAVICHANDRAN A, et al. Multi-task incremental learning for object detection [EB/OL]. (2020-11-18) [2022-09-23].. |
82 | BAWEJA C, GLOCKER B, KAMNITSAS K. Towards continual learning in medical imaging [EB/OL]. (2018-11-06) [2022-09-23].. |
83 | ÖZGÜN S, RICKMANN A M, ROY A G, et al. Importance driven continual learning for segmentation across domains[C]// Proceedings of the 2020 International Workshop on Machine Learning in Medical Imaging, LNCS 12436. Cham: Springer, 2020: 423-433. |
84 | MICHIELI U, ZANUTTIGH P. Incremental learning techniques for semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 3205-3212. 10.1109/iccvw.2019.00400 |
85 | LI Z Y, ZHONG C H, WANG R X, et al. Continual learning of new diseases with dual distillation and ensemble strategy[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12261. Cham: Springer, 2020: 169-178. |
86 | CERMELLI F, MANCINI M, ROTA BULÒ S R, et al. Modeling the background for incremental learning in semantic segmentation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9230-9239. 10.1109/cvpr42600.2020.00925 |
87 | DOUILLARD A, CHEN Y F, DAPOGNY A, et al. PLOP: learning without forgetting for continual semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4039-4049. 10.1109/cvpr46437.2021.00403 |
88 | MARACANI A, MICHIELI U, TOLDO M, et al. RECALL: replay-based continual learning in semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7006-7015. 10.1109/iccv48922.2021.00694 |
89 | MICHIELI U, ZANUTTIGH P. Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1114-1124. 10.1109/cvpr46437.2021.00117 |
90 | SEFF A, BEATSON A, SUO D, et al. Continual learning in generative adversarial nets[EB/OL]. (2017-05-23) [2022-09-23].. |
91 | WU C S, HERRANZ L, LIU X L, et al. Memory replay GANs: learning to generate new categories without forgetting[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 5966-5976. |
92 | RIOS A, ITTI L. Closed-loop memory GAN for continual learning[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 3332-3338. 10.24963/ijcai.2019/462 |
93 | ZHAI M Y, CHEN L, TUNG F, et al. Lifelong GAN: continual learning for conditional image generation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 2759-2768. 10.1109/iccv.2019.00285 |
94 | ZHAI M Y, CHEN L, HE J W, et al. Piggyback GAN: efficient lifelong learning for image conditioned generation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12366. Cham: Springer, 2020: 397-413. |
95 | ZHAI M Y, CHEN L, MORI G. Hyper-LifelongGAN: scalable lifelong learning for image conditioned generation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2246-2255. 10.1109/cvpr46437.2021.00228 |
96 | ZHOU M, XIAO J, CHANG Y F, et al. Image de-raining via continual learning[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4905-4914. 10.1109/cvpr46437.2021.00487 |
97 | ZHU L, SHE Q, ZHANG B, et al. Learning the superpixel in a non-iterative and lifelong manner[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1225-1234. 10.1109/cvpr46437.2021.00128 |
98 | PU N, CHEN W, LIU Y, et al. Lifelong person re-identification via adaptive knowledge accumulation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7897-7906. 10.1109/cvpr46437.2021.00781 |
99 | FAN L, XIONG P X, WEI W, et al. FLAR: a unified prototype framework for few-sample lifelong active recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15374-15383. 10.1109/iccv48922.2021.01511 |
100 | LI T J, KE Q H, RAHMANI H, et al. Else-Net: elastic semantic network for continual action recognition from skeleton data[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13414-13423. 10.1109/iccv48922.2021.01318 |
101 | ROSTAMI M, SPINOULAS L, HUSSEIN M, et al. Detection and continual learning of novel face presentation attacks[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14831-14840. 10.1109/iccv48922.2021.01458 |
102 | WANG S Z, LASKAR Z, MELEKHOV I, et al. Continual learning for image-based camera localization [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3232-3242. 10.1109/iccv48922.2021.00324 |
103 | DÍAZ-RODRÍGUEZ N, LOMONACO V, FILLIAT D, et al. Don’t forget, there is more than forgetting: new metrics for Continual Learning[EB/OL]. (2018-10-31) [2022-09-23].. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[3] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[10] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[11] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[12] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[13] | Sailong SHI, Zhiwen FANG. Gaze estimation model based on multi-scale aggregation and shared attention [J]. Journal of Computer Applications, 2024, 44(7): 2047-2054. |
[14] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[15] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||