[1] 赵元棣,王超,李善梅,等. 基于重采样的终端区飞行轨迹可信聚类方法[J]. 西南交通大学学报, 2017, 52(4):817-825.(ZHAO Y D, WANG C, LI S M, et al. Dependable clustering method of flight trajectory in terminal area based on resampling[J]. Journal of Southwest Jiaotong University, 2017, 52(4):817-825.) [2] HOU J, LIU W. Parameter independent clustering based on dominant sets and cluster merging[J]. Information Sciences, 2017, 405:1-17. [3] 王超,徐肖豪,王飞. 基于航迹聚类的终端区进场程序管制适用性分析[J]. 南京航空航天大学学报, 2013, 45(1):130-139. (WANG C, XU X H, WANG F. ATC serviceability analysis of terminal arrival procedures using trajectory clustering[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(1):130-139.) [4] 王莉莉,彭勃. 基于LOFC时间窗分割算法的航迹聚类研究[J]. 南京航空航天大学学报,2018,50(5):661-665. (WANG L L, PENG B. Track clustering based on LOFC time window segmentation algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(5):661-665.) [5] 王超,韩邦村,王飞. 基于轨迹谱聚类的终端区盛行交通流识别方法[J]. 西南交通大学学报, 2014, 49(3):546-552. (WANG C, HAN B C, WANG F. Identification of prevalent air traffic flow in terminal airspace based on trajectory spectral clustering[J]. Journal of Southwest Jiaotong University, 2014, 49(3):546-552.) [6] KALAYEH M M, MUSSMANN S, PETRAKOVA A, et al. Understanding trajectory behavior:a motion pattern approach[EB/OL].[2019-01-01]. https://arxiv.org/pdf/1501.00614.pdf. [7] 王超,郑旭芳,卜宁. 基于小波聚类的终端区进场轨迹模式识别[J].计算机应用与软件, 2016, 33(11):112-116. (WANG C, ZHENG X F, BU N. Pattern recognition of approach landing trajectories in terminal airspace based on wavelet clustering[J]. Computer Applications and Software, 2016, 33(11):112-116.) [8] 石陆魁,张延茹,张欣. 基于时空模式的轨迹数据聚类算法[J]. 计算机应用, 2017, 37(3):854-859. (SHI L K, ZHANG Y R, ZHANG X. Trajectory data clustering algorithm based on spatio-temporal pattern[J]. Journal of Computer Applications, 2017, 37(3):854-859.) [9] ZHANG D, LEE K, LEE I. Hierarchical trajectory clustering for spatio-temporal periodic pattern mining[J]. Expert Systems with Applications, 2018, 92:1-11. [10] YUAN G, SUN P, ZHAO J, et al. A review of moving object trajectory clustering algorithms[J]. Artificial Intelligence Review, 2017, 47(1):123-144. [11] REHM F. Clustering of flight tracks[C]//Proceedings of the 2010 American Institute of Aeronautics and Astronautics Infotech and Aerospace. Reston, VA:AIAA, 2010:1-9. [12] 徐涛,李永祥,吕宗平. 基于航迹点法向距离的航迹聚类研究[J]. 系统工程与电子技术, 2015, 37(9):2198-2204. (XU T, LI Y X, LYU Z P. Research on flight tracks clustering based on the vertical distance of track points[J]. Systems Engineering and Electronics, 2015, 37(9):2198-2204.) [13] AGRAWAL R, LIN K I, SAWHNEY H S, et al. Fast similarity search in the presence of noise, scaling, and translation in timeseries databases[C]//Proceedings of the 21th International Conference on Very Large Data Bases. San Francisco:Morgan Kaufmann Publishers, 1995:490-501. [14] 龚玺,裴韬,孙嘉,等. 时空轨迹聚类方法研究进展[J]. 地理科学进展, 2011, 30(5):522-534. (GONG X, PEI T, SUN J, et al. Review of the research progresses in trajectory clustering methods[J]. Progress in Geography, 2011, 30(5):522-534.) [15] LEI J, YIN J, SHEN H. GFO:a data driven approach for optimizing the Gaussian function based similarity metric in computational biology[J]. Neurocomputing, 2013, 99:307-315. [16] von LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17:395-416. [17] ROUSSEEUW P J. Silhouettes:a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20:53-65. [18] HAN J, KAMBER M, PEI J.数据挖掘:概念与技术[M]. 范明,孟小峰,译. 3版. 北京:机械工业出版社, 2015:317. (HAN J W, KAMBER M, PEI J. Data Mining:Concepts and Techniques[M]. FAN M, MENG X F, translated. 3rd edition. Beijing:China Machine Press, 2015:317.) [19] OZO N. Flight tracks, Northern California TRACON[DB/OL].[2019-01-01]. https://c3.nasa.gov/dashlink/resources/132. [20] SHEN H. On optimizing Gaussian function based similarity metric in computational biology[EB/OL].[2019-04-01]. http://www.csbio.sjtu.edu.cn/bioinf/GFO/. |