[1] 杨双龙, 吕学强, 李卓, 等. 中文专利文献术语自动识别研究[J]. 中文信息学报,2016,30(3):111-117,124.(YANG S L, LYU X Q,LI Z,et al. Automatic recognition of terms in Chinese patent literature[J]. Journal of Chinese Information Processing, 2016,30(3):111-117,124.) [2] SUN X,SUN C,REN F. New word detection and emotional tendency judgment based on mixed model[C]//Proceedings of the IEEE 3rd International Conference on Cloud Computing and Intelligence Systems. Piscataway:IEEE,2014:118-123. [3] 王密平, 王昊, 邓三鸿, 等. 基于CRFs的冶金领域中文专利术语抽取研究[J]. 现代图书情报技术,2016(6):28-36.(WANG M P,WANG H,DENG S H,et al. Extracting Chinese metallurgy patent terms with conditional random fields[J]. New Technology of Library and Information Service,2016(6):28-36.) [4] 袁劲松, 张小明, 李舟军. 术语自动抽取方法研究综述[J]. 计算机科学,2015,42(8):7-12. (YUAN J S,ZHANG X M,LI Z J. Survey of automatic terminology extraction methodologies[J]. Computer Science,2015,42(8):7-12.) [5] SUN X,HUANG D,SONG H,et al. Chinese new word identification:a latent discriminative model with global features[J]. Journal of Computer Science and Technology,2011,26(1):14-24. [6] LI H,HUANG C,GAO J,et al. The use of SVM for Chinese new word identification[C]//Proceedings of the 1st International Joint Conference on Natural Language Processing,LNCS 3248. Berlin:Springer,2004:723-732. [7] FU G,LUKE K K. Chinese named entity recognition using lexicalized HMMs[J]. ACM SIGKDD Explorations Newsletter,2005, 7(1):19-25. [8] LEONG K S,WONG F,LI Y,et al. Integration of named entity information for Chinese word segmentation based on maximum entropy[C]//Proceedings of the 4th International Conference on Intelligent Computing,LNCS 5226. Berlin:Springer,2008:962-969. [9] 陈飞, 刘奕群, 魏超, 等. 基于条件随机场方法的开放领域新词发现[J]. 软件学报,2013,24(5):1051-1060.(CHEN F,LIU Y Q,WEI C,et al. Open domain new word detection using condition random field method[J]. Journal of Software,2013,24(5):1051-1060.) [10] NISHIMURA N,RAGDE P, SZEIDER S. Solving #SAT using vertex covers[C]//Proceedings of the 2006 International Conference on Theory and Applications of Satisfiability Testing,LNCS 4121. Berlin:Springer,2006:396-409. [11] 王文荣, 乔晓东, 朱礼军. 针对特定领域的新词发现和新技术发现[J]. 现代图书情报技术,2008(2):35-40. (WANG W R, QIAO X D,ZHU L J. New word and technology discovery of specific domain[J]. New Technology of Library and Information Service,2008(2):35-40.) [12] 夭荣朋, 许国艳, 宋健. 基于改进互信息和邻接熵的微博新词发现方法[J]. 计算机应用,2016,36(10):2772-2776. (YAO R P,XU G Y,SONG J. Micro-blog new word discovery method based on improved mutual information and branch entropy[J]. Journal of Computer Applications,2016,36(10):2772-2776.) [13] 欧阳柳波, 周伟光. 基于位置标签与词性结合的组合词抽取方法[J]. 计算机应用研究,2016,33(4):1062-1065. (OUYANG L B,ZHOU W G. Compound word extraction based on location tag and POS[J]. Application Research of Computers,2016,33(4):1062-1065.) [14] 周霜霜, 徐金安, 陈钰枫, 等. 融合规则与统计的微博新词发现方法[J]. 计算机应用,2017,37(4):1044-1050.(ZHOU S S, XU J A,CHEN Y F,et al. New words detection method for microblog text based on integrating of rules and statistics[J]. Journal of Computer Applications,2017,37(4):1044-1050.) [15] 张华平, 商建云. 面向社会媒体的开放领域新词发现[J]. 中文信息学报,2017,31(3):55-61. (ZHANG H P,SHANG J Y. Social media-oriented open domain new word detection[J]. Journal of Chinese Information Processing,2017,31(3):55-61.) [16] 马建红, 张炳斐, 张少光, 等. 基于主动MCNN-SCRF的新能源汽车命名实体识别[J]. 计算机工程与应用,2019,55(7):23-29.(MA J H,ZHANG B F,ZHANG S G,et al. Named entity recognition for new energy vehicles based on active MCNN-SCRF[J]. Computer Engineering and Applications,2019,55(7):23-29.) [17] 刘昱彤, 吴斌, 谢韬, 等. 基于古汉语语料的新词发现方法[J]. 中文信息学报,2019,33(1):46-55.(LIU Y T,WU B,XIE T, et al. New word detection in ancient Chinese corpus[J]. Journal of Chinese Information Processing,2019,33(1):46-55.) [18] 张桂平, 刘东生, 尹宝生, 等. 面向专利文献的中文分词技术的研究[J]. 中文信息学报,2010,24(3):112-116.(ZHANG G P, LIU D S,YIN B S,et al. Research on Chinese word segmentation for patent documents[J]. Journal of Chinese Information Processing,2010,24(3):112-116.) [19] 岳金媛, 徐金安, 张玉洁. 面向专利文献的汉语分词技术研究[J]. 北京大学学报(自然科学版), 2013,49(1):159-164. (YUE J Y,XU J A,ZHANG Y J. Chinese word segmentation for patent documents[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2013,49(1):159-164.) [20] 俞琰, 赵乃瑄. 基于通用词与术语部件的专利术语抽取[J]. 情报学报,2018,37(7):742-752. (YU Y,ZHAO N X. Patent term extraction based on generic words and term components[J]. Journal of the China Society for Scientific and Technical Information,2018,37(7):742-752.) [21] 赵飞龙, 马建红. 面向专利的功能信息自动标注方法研究[J]. 重庆邮电大学学报(自然科学版),2015,27(2):273-278. (ZHAO F L,MA J H. Method of automatic annotation information for patents[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(2):273-278.) [22] 毛宇. 中医药症状的中文分词与句子相似度研究[D]. 杭州:浙江大学,2017:34-45. (MAO Y. Research of Chinese word segmentation and sentence similarity on traditional Chinese medicine symptom[D]. Hangzhou:Zhejiang University,2017:34-45.) [23] 王杏利, 鞠建伟, 宋敏霞, 等. 农业项目科技查新特征与典型案例分析[J]. 数字图书馆论坛,2017(4):68-72.(WANG X L, JU J W,SONG M X,et al. Analysis of features and cases of the agricultural scientific and technical novelty search[J]. Digital Library Forum,2017(4):68-72.) [24] 中华人民共和国国家知识产权局. 专利审查指南[M]. 北京:知识产权出版社,2010:9-174. (National Intellectual Property Administration,PRC. Guidelines for Patent Examination[M]. Beijing:Intellectual Property Publishing House,2010:9-174.) |