Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 1985-1992.DOI: 10.11772/j.issn.1001-9081.2021050764
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Heng CHEN1,2(), Siyi WANG1, Zhengguang LI1, Guanyu LI2, Xin LIU1
Received:
2021-05-12
Revised:
2021-09-15
Accepted:
2021-09-22
Online:
2021-09-15
Published:
2022-07-10
Contact:
Heng CHEN
About author:
CHEN Heng, born in 1982, Ph. D. candidate, associate professor. His research interests include machine learning, knowledge completion.Supported by:
陈恒1,2(), 王思懿1, 李正光1, 李冠宇2, 刘鑫1
通讯作者:
陈恒
作者简介:
王思懿(1998—),女(满),辽宁瓦房店人,硕士研究生,主要研究方向:机器学习、知识图谱基金资助:
CLC Number:
Heng CHEN, Siyi WANG, Zhengguang LI, Guanyu LI, Xin LIU. Capsule network knowledge graph embedding model based on relational memory[J]. Journal of Computer Applications, 2022, 42(7): 1985-1992.
陈恒, 王思懿, 李正光, 李冠宇, 刘鑫. 基于关系记忆的胶囊网络知识图谱嵌入模型[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 1985-1992.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050764
Dataset | #En | #Re | #Va | #Tr | #Te |
---|---|---|---|---|---|
WN18RR | 40 943 | 11 | 3 034 | 86 835 | 3 134 |
FB15K-237 | 14 541 | 237 | 17 535 | 272 115 | 20 466 |
FB13 | 75 043 | 13 | 11 816 | 316 232 | 47 466 |
WN11 | 38 696 | 11 | 5 218 | 112 581 | 21 088 |
Tab. 1 Dataset statistics
Dataset | #En | #Re | #Va | #Tr | #Te |
---|---|---|---|---|---|
WN18RR | 40 943 | 11 | 3 034 | 86 835 | 3 134 |
FB15K-237 | 14 541 | 237 | 17 535 | 272 115 | 20 466 |
FB13 | 75 043 | 13 | 11 816 | 316 232 | 47 466 |
WN11 | 38 696 | 11 | 5 218 | 112 581 | 21 088 |
模型 | FB15K-237 | WN18RR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MR | MRR | Hit@1 | Hit@3 | Hit@10 | MR | MRR | Hit@1 | Hit@3 | Hit@10 | |
TransE | 357 | 0.294 | — | — | 0.465 | 3 384 | 0.226 | — | — | 0.501 |
DistMult | 254 | 0.241 | 0.155 | 0.263 | 0.419 | 5 110 | 0.430 | 0.390 | 0.440 | 0.490 |
ComplEx | 339 | 0.247 | 0.158 | 0.275 | 0.428 | 5 261 | 0.440 | 0.410 | 0.460 | 0.510 |
ConvE | 244 | 0.325 | 0.237 | 0.356 | 0.501 | 4 187 | 0.430 | 0.400 | 0.440 | 0.520 |
ConvKB | 254 | 0.418 | — | — | 0.532 | 763 | 0.253 | — | — | 0.567 |
RotatE[ | 177 | 0.338 | 0.241 | 0.375 | 0.533 | 3 340 | 0.476 | 0.428 | 0.492 | 0.571 |
CapsE | 303 | 0.523 | 0.478 | — | 0.593 | 719 | 0.415 | 0.337 | — | 0.560 |
本文模型 | 324 | 0.543 | 0.436 | 0.385 | 0.613 | 706 | 0.448 | 0.403 | 0.512 | 0.582 |
Tab. 2 Link prediction results on datasets WN18RR and FB15K-237
模型 | FB15K-237 | WN18RR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MR | MRR | Hit@1 | Hit@3 | Hit@10 | MR | MRR | Hit@1 | Hit@3 | Hit@10 | |
TransE | 357 | 0.294 | — | — | 0.465 | 3 384 | 0.226 | — | — | 0.501 |
DistMult | 254 | 0.241 | 0.155 | 0.263 | 0.419 | 5 110 | 0.430 | 0.390 | 0.440 | 0.490 |
ComplEx | 339 | 0.247 | 0.158 | 0.275 | 0.428 | 5 261 | 0.440 | 0.410 | 0.460 | 0.510 |
ConvE | 244 | 0.325 | 0.237 | 0.356 | 0.501 | 4 187 | 0.430 | 0.400 | 0.440 | 0.520 |
ConvKB | 254 | 0.418 | — | — | 0.532 | 763 | 0.253 | — | — | 0.567 |
RotatE[ | 177 | 0.338 | 0.241 | 0.375 | 0.533 | 3 340 | 0.476 | 0.428 | 0.492 | 0.571 |
CapsE | 303 | 0.523 | 0.478 | — | 0.593 | 719 | 0.415 | 0.337 | — | 0.560 |
本文模型 | 324 | 0.543 | 0.436 | 0.385 | 0.613 | 706 | 0.448 | 0.403 | 0.512 | 0.582 |
模型 | WN11 | FB13 |
---|---|---|
TransE | 89.2 | 88.1 |
TransH | 78.8 | 83.3 |
TransR | 85.9 | 82.5 |
TransD[ | 86.4 | 89.1 |
TranSparse-S[ | 86.4 | 88.2 |
TranSparse-US[ | 86.8 | 87.5 |
TransG[ | 87.4 | 87.3 |
ConvKB | 87.6 | 88.8 |
R-MeN | 90.5 | 88.9 |
本文模型 | 91.5 | 87.5 |
Tab. 3 Triple classification results on datasets WN11 and FB13
模型 | WN11 | FB13 |
---|---|---|
TransE | 89.2 | 88.1 |
TransH | 78.8 | 83.3 |
TransR | 85.9 | 82.5 |
TransD[ | 86.4 | 89.1 |
TranSparse-S[ | 86.4 | 88.2 |
TranSparse-US[ | 86.8 | 87.5 |
TransG[ | 87.4 | 87.3 |
ConvKB | 87.6 | 88.8 |
R-MeN | 90.5 | 88.9 |
本文模型 | 91.5 | 87.5 |
1 | 刘知远,孙茂松,林衍凯,等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. |
LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning: a review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261. | |
2 | SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 697-706. 10.1145/1242572.1242667 |
3 | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. 10.1145/1376616.1376746 |
4 | LEHMANN J, ISELE R, JAKOB M, et al. DBpedia — a large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2): 167-195. 10.3233/sw-140134 |
5 | ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362. 10.1145/2939672.2939673 |
6 | HAO Y C, ZHANG Y Z, LIU K, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017: 221-231. 10.18653/v1/p17-1021 |
7 | XIONG C Y, POWER R, CALLAN J. Explicit semantic ranking for academic search via knowledge graph embedding[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 1271-1279. 10.1145/3038912.3052558 |
8 | YANG B S, MITCHELL T. Leveraging knowledge bases in LSTMs for improving machine reading[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017: 1436-1446. 10.18653/v1/p17-1132 |
9 | SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 926-934. |
10 | WEST R, GABRILOVICH E, MURPHY K, et al. Knowledge base completion via search-based question answering[C]// Proceedings of the 23rd International Conference on World Wide Web. New York: ACM, 2014: 515-526. 10.1145/2566486.2568032 |
11 | CHEN H, WANG W W, LI G Y, et al. A quaternion-embedded capsule network model for knowledge graph completion[J]. IEEE Access, 2020, 8: 100890-100904. 10.1109/access.2020.2997177 |
12 | ZHANG Z Q, CAI J Y, ZHANG Y D, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 3065-3072. 10.1609/aaai.v34i03.5701 |
13 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 2787-2795. |
14 | WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2014: 1112-1119. 10.1609/aaai.v28i1.8870 |
15 | LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2181-2187. 10.1609/aaai.v29i1.9491 |
16 | YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2015-08-29) [2021-09-04].. |
17 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080. |
18 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 1811-1818. 10.1609/aaai.v32i1.11573 |
19 | NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 327-333. 10.18653/v1/n18-2053 |
20 | NGUYEN D Q, VU T, NGUYEN T D, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 2180-2189. 10.18653/v1/n19-1226 |
21 | NGUYEN D Q, NGUYEN T D, PHUNG D. A relational memory-based embedding model for triple classification and search personalization[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 3429-3435. 10.18653/v1/2020.acl-main.313 |
22 | KIM Y, LEE H, JUNG K. AttnConvnet at SemEval-2018 task 1: attention-based convolutional neural networks for multi-label emotion classification[C]// Proceedings of the 12th International Workshop on Semantic Evaluation. Stroudsburg, PA: Association for Computational Linguistics, 2018: 141-145. 10.18653/v1/s18-1019 |
23 | 贾旭东,王莉. 基于多头注意力胶囊网络的文本分类模型[J]. 清华大学学报(自然科学版), 2020, 60(5):415-421. 10.7717/peerj-cs.831 |
JIA X D, WANG L. Text classification model based on multi-head attention capsule networks[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(5): 415-421. 10.7717/peerj-cs.831 | |
24 | 陈恒,李冠宇,祁瑞华,等. 胶囊网络在知识图谱补全中的应用[J]. 计算机工程与应用, 2020, 56(8):110-116. |
CHEN H, LI G Y, QI R H, et al. Capsule Network's application in knowledge graph completion[J]. Computer Engineering and Applications, 2020, 56(8): 110-116. | |
25 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. 10.1016/s0262-4079(17)32358-8 |
26 | SANTORO A, FAULKNER R, RAPOSO D, et al. Relational recurrent neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 7310-7321. |
27 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-09-04].. |
28 | TOUTANOVA K, CHEN D Q. Observed versus latent features for knowledge base and text inference[C]// Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. Stroudsburg, PA: Association for Computational Linguistics, 2015: 57-66. 10.18653/v1/w15-4007 |
29 | SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[EB/OL]. (2019-02-26) [2021-09-04].. |
30 | JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2015: 687-696. 10.3115/v1/p15-1067 |
31 | JI G L, LIU K, HE S Z, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 985-991. 10.1609/aaai.v30i1.10089 |
32 | XIAO H, HUANG M L, ZHU X Y. TransG: a generative mixture model for knowledge graph embedding[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016: 2316-2325. 10.18653/v1/p16-1219 |
[1] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[2] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[3] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[4] | Zexi JIN, Lei LI, Ji LIU. Transfer learning model based on improved domain separation network [J]. Journal of Computer Applications, 2023, 43(8): 2382-2389. |
[5] | Qinghai XU, Shifei DING, Tongfeng SUN, Jian ZHANG, Lili GUO. Improved capsule network based on multipath feature [J]. Journal of Computer Applications, 2023, 43(5): 1330-1335. |
[6] | Hao SUN, Jian CAO, Haisheng LI, Dianhui MAO. Session-based recommendation model based on enhanced capsule network [J]. Journal of Computer Applications, 2023, 43(4): 1043-1049. |
[7] | Kai WEN, Xiao XUE, Juan JI. Shared transformation matrix capsule network for complex image classification [J]. Journal of Computer Applications, 2023, 43(11): 3411-3417. |
[8] | Junhua GU, Rui WANG, Ningning LI, Suqi ZHANG. Knowledge graph attention network fusing collaborative filtering information [J]. Journal of Computer Applications, 2022, 42(4): 1087-1092. |
[9] | Xiaopeng YU, Ruhan HE, Jin HUANG, Junjie ZHANG, Xinrong HU. Knowledge graph embedding model based on improved Inception structure [J]. Journal of Computer Applications, 2022, 42(4): 1065-1071. |
[10] | Wenjing JIANG, Xi XIONG, Zhongzhi LI, Binyong LI. Recommendation system based on non-sampling collaborative knowledge graph network [J]. Journal of Computer Applications, 2022, 42(4): 1057-1064. |
[11] | Jiana MENG, Pin LYU, Yuhai YU, Shichang SUN, Hongfei LIN. Aspect-level cross-domain sentiment analysis based on capsule network [J]. Journal of Computer Applications, 2022, 42(12): 3700-3707. |
[12] | Xiaopeng WANG, Yuanyuan SUN, Hongfei LIN. Encoding-decoding relationship extraction model based on criminal Electra [J]. Journal of Computer Applications, 2022, 42(1): 87-93. |
[13] | TIAN Ling, ZHANG Jinchuan, ZHANG Jinhao, ZHOU Wangtao, ZHOU Xue. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory [J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. |
[14] | LIU Huan, LI Xiaoge, HU Likun, HU Feixiong, WANG Penghua. Knowledge graph driven recommendation model of graph neural network [J]. Journal of Computer Applications, 2021, 41(7): 1865-1870. |
[15] | SUN Jianqiang, XU Shaohua. Knowledge reasoning method based on differentiable neural computer and Bayesian network [J]. Journal of Computer Applications, 2021, 41(2): 337-342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||