[1] 徐子豪, 黄伟泉, 王胤. 基于深度学习的监控视频中多类别车辆检测[J]. 计算机应用,2019,39(3):700-705. (XU Z H, HUANG W G,WANG Y. Multi-class vehicle detection in surveillance video based on deep learning[J]. Journal of Computer Applications,2019,39(3):700-705.) [2] 王卫东, 程丹. 监控场景下的实时车辆检测方法[J]. 电子测量与仪器学报,2018,32(7):83-88. (WANG W D,CHENG D. Real-time vehicle detection method for video surveillance[J]. Journal of Electronic Measurement and Instrument,2018,32(7):83-88.) [3] LIU Y,TIAN B,CHEN S,et al. A survey of vision-based vehicle detection and tracking techniques in ITS[C]//Proceedings of 2013 IEEE International Conference on Vehicular Electronics and Safety. Piscataway:IEEE,2013:72-77. [4] KIM H,LEE Y,YIM B,et al. On-road object detection using deep neural network[C]//Proceedings of the 2016 IEEE International Conference on Consumer Electronics-Asia. Piscataway:IEEE, 2016:1-4. [5] LAW H,DENG J. CornerNet:detecting objects as paired keypoints[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11218. Cham:Springer,2018:765-781. [6] ZHOU X,ZHUO J,KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:850-859. [7] DUAN K,BAI S,XIE L,et al. CenterNet:keypoint triplets for object detection[EB/OL].[2019-04-19]. https://arxiv.org/pdf/1904.08189.pdf. [8] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1440-1448. [9] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(6):1137-1149. [10] DAI J,LI Y,HE K,et al. R-FCN:object detection via regionbased fully convolutional networks[C]//Advances in Neural Information Processing Systems 29. Barcelona:NIPS, 2016:379-387. [11] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [12] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [13] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer,2016:21-37. [14] FU C,LIU W,RANGA A,et al. DSSD:deconvolutional single shot detector[EB/OL].[2019-01-17]. https://arxiv.org/pdf/1701.06659.pdf. [15] LI Z,ZHOU F. FSSD:feature fusion single shot multibox detector[EB/OL].[2018-12-17]. https://arxiv.org/pdf/1712.00960.pdf. [16] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [17] HOWARD A,SANDLER M,CHU G,et al. Searching for MobileNetV3[EB/OL].[2019-05-19]. https://arxiv.org/pdf/1905.02244.pdf. [18] REZATOFIGHI H,TSOI N,GWAK J Y,et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:658-666. [19] ARTHUR D,VASSILVITSKII S. K-means++:the advantages of careful seeding[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. New York:ACM,2007:1027-1035. [20] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:936-944. [21] EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al. The pascal Visual Object Classes(VOC)challenge[J]. International Journal of Computer Vision,2010,88(2):303-338. [22] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [23] SAINATH T N,KINGSBURY B,SAON G,et al. Deep convolutional neural networks for large-scale speech tasks[J]. Neural Networks,2015,64:39-48. |