[1] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, CA:University of California Press, 1967:281-297. [2] 王春龙,张敬旭.基于LDA的改进K-means算法在文本聚类中的应用[J].计算机应用,2014,34(1):249-254.(WANG C L, ZHANG J X. Improved K-means algorithm based on latent Dirichlet allocation for text clustering[J]. Journal of Computer Applications, 2014, 34(1):249-254.) [3] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 1996 International Conference on Knowledge Discovery and Data Mining. Menlo Park, CA:AAAI Press, 1996:226-231. [4] von LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4):395-416. [5] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496. [6] 李涛,葛洪伟,苏树智.基于密度自适应距离的密度峰聚类[J].小型微型计算机系统,2017,38(6):1347-1352.(LI T, GE H W, SU S Z. Density peaks clustering based on density adaptive istance[J]. Journal of Chinese Computer Systems, 2017, 38(6):1347-1352.) [7] DU M J, DING S F, JIA H J. Study on density peaks clustering based on k-nearest neighbors and principal component analysis[J]. Knowledge-Based Systems, 2016, 99:135-145. [8] MEHMOOD R, BIE R F, DAWOOD H, et al. Fuzzy clustering by fast search and find of density peaks[C]//Proceedings of the 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things. Piscataway, NJ:IEEE, 2015:785-793. [9] MEHMOOD R, ZHANG G Z, BIE R F, et al. Clustering by fast search and find of density peaks via heat diffusion[J]. Neurocomputing, 2016, 208(C):210-217. [10] JARVIS R A, PATRICK E A. Clustering using a similarity measure based on shared near neighbors[J]. IEEE Transactions on Computers, 1973, C-22(11):1025-1034. [11] 张俊.基于信息熵的高维数据流子空间聚类方法[J].安徽师范大学学报(自然科学版),2015,38(1):36-39.(ZHANG J. A subspace clustering algorithm for high-dimensional data streams based on entropy[J]. Journal of Anhui Normal University (Natural Science), 2015, 38(1):36-39.) [12] 谢娟英,高红超,谢维信.K近邻优化的密度峰值快速搜索聚类算法[J].中国科学:信息科学,2016,46(2):258-280.(XIE J Y, GAO H C, XIE W X. K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset[J]. Scientia Sinica (Informationis), 2016, 46(2):258-280.) [13] CHANG H, YEUNG D-Y. Robust path-based spectral clustering[J]. Pattern Recognition, 2008, 41(1):191-203. [14] 马春来,单洪,马涛.一种基于簇中心点自动选择策略的密度峰值聚类算法[J].计算机科学,2016,43(7):255-258,280.(MA C L, SHAN H, MA T. Improved density peaks based clustering algorithm with strategy choosing cluster center automatically[J]. Computer Science, 2016, 43(7):255-258, 280.) [15] CARPANETO G, TOTH P. Algorithm 548:solution of the assignment problem[H] [J]. ACM Transactions on Mathematical Software, 1980, 6(1):104-111. [16] STREHL A, GHOSH J. Cluster ensembles - a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3:583-617. [17] SASAKI Y. The truth of the F-measure[EB/OL].[2017-10-16]. https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf. |