[1] PENATTI O A B,NOGUEIRA K,DOS SANTOS J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2015:44-51. [2] 田艳玲, 张维桐, 张锲石, 等. 图像场景分类技术综述[J]. 电子学报,2019,47(4):915-926.(TIAN Y L,ZHANG W T,ZHANG Q S,et al. Review on image scene classification technology[J]. Acta Electronica Sinica,2019,47(4):915-926.) [3] PHILBIN J,CHUM O,ISARD M,et al. Object retrieval with large vocabularies and fast spatial matching[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2007:1-8. [4] JÉGOU H,DOUZE M,SCHMID C,et al. Aggregating local descriptors into a compact image representation[C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2010:3304-3311. [5] JAAKKOLA T S,HAUSSLER D. Exploiting generative models in discriminative classifiers[C]//Proceedings of the 1998 Conference on Neural Information Processing Systems. Cambridge:MIT Press, 1998:487-493. [6] BIAN X,CHEN C,TIAN L,et al. Fusing local and global features for high-resolution scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(6):2889-2901. [7] HUANG L,CHEN C,LI W,et al. Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors[J]. Remote Sensing,2016,8(6):No. 483. [8] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York:ACM,2012:1097-1105. [9] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-10-17]. https://arxiv.org/pdf/1409.1556.pdf. [10] SZEGEDY C,LIU W,JIA Y,et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:1-9. [11] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [12] ZHOU Y,YE Q,QIU Q,et al. Oriented response networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4961-4970. [13] LUAN S,CHEN C,ZHANG B,et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing,2018,27(9):4357-4366. [14] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[EB/OL].[2019-03-10]. https://arxiv.org/pdf/1807.06521.pdf. [15] XIA G,HU J,HU F,et al. AID:a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(7):3965-3981. [16] CHENG G,HAN J,LU X. Remote sensing image scene classification:Benchmark and state of the art[J]. Proceedings of the IEEE, 2017,105(10):1865-1883. [17] 许夙晖, 慕晓冬, 赵鹏,等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报,2016,45(7):834-840.(XU S H,MU X D,ZHAO P,et al. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica,2016,45(7):834-840.) [18] WANG J,LIU W,MA L,et al. IORN:an effective remote sensing image scene classification framework[J]. IEEE Geoscience and Remote Sensing Letters,2018,15(11):1695-1699. [19] CHEN Z,WANG S,HOU X,et al. Recurrent transformer network for remote sensing scene categorization[C]//Proceedings of the 2018 British Machine Vision Conference. Durham:BMVA, 2018:No. 987. [20] JADERBERG M,SIMONYAN K,ZISSERMAN A,et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:2017-2025. [21] WANG Q,LIU S,CHANUSSOT J,et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(2):1155-1167. [22] BIAN X, CHEN C, SHENG Y, et al. Fusing two convolutional neural networks for high-resolution scene classification[C]//Proceedings of the 37th International Conference on Geoscience and Remote Sensing Symposium. Piscataway:IEEE, 2017:3242-3245. [23] MU N,XU X,WANG Y,et al. A multiscale superpixel-level salient object detection model using local-global contrast cue[J]. Journal of Shanghai Jiaotong University(Science),2017,22(1):121-128. [24] WANG S,LUO L,ZHANG N,et al. AutoScaler:scale-attention networks for visual correspondence[EB/OL].[2019-4-13]. https://arxiv.org/pdf/1611.05837.pdf. [25] ACHANTA R,SHAJI A,SMITH K,et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282. |