[1] JEON J,PARK J C,JO Y,et al. A real-time facial expression recognizer using deep neural network[C]//Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. New York:ACM,2016:No. 94. [2] 张延良, 卢冰, 洪晓鹏, 等. 基于局部区域方法的微表情识别[J]. 计算机应用,2019,39(5):1282-1287.(ZHANG Y L,LU B, HONG X P,et al. Micro-expression recognition based on local region method[J]. Journal of Computer Applications,2019,39(5):1282-1287.) [3] 罗珍珍, 陈靓影, 刘乐元, 等. 基于条件随机森林的非约束环境自然笑脸检测[J]. 自动化学报,2018,44(4):696-706.(LUO Z Z,CHEN J Y,LIU L Y,et al. Conditional random forests for spontaneous smile detection in unconstrained environment[J]. Acta Automatica Sinica,2018,44(4):696-706.) [4] 戴逸翔, 王雪, 戴鹏, 等. 面向可穿戴多模生物信息传感网络的栈式自编码器优化情绪识别[J]. 计算机学报,2017,40(8):1750-1763.(DAI Y X,WANG X,DAI P,et al. Stacked auto-encoder optimized emotion recognition in multimodal wearable biosensor network[J]. Chinese Journal of Computers,2017,40(8):1750-1763.) [5] LUO Y,ZHANG T,ZHANG Y. A novel fusion method of PCA and LDP for facial expression feature extraction[J]. Optik-International Journal for Light and Electron Optics,2016,127(2):718-721. [6] KUMAR P,HAPPY S L,ROUTRAY A. A real-time robust facial expression recognition system using HOG features[C]//Proceedings of the 2016 International Conference on Computing Analytics and Security Trends. Piscataway:IEEE,2016:289-293. [7] 刘帅师, 田彦涛, 万川. 基于Gabor多方向特征融合与分块直方图的人脸表情识别方法[J]. 自动化学报,2011,37(12):1455-1463. (LIU S S,TIAN Y T,WAN C. Facial expression recognition method based on GABOR multi-orientation features fusion and block histogram[J]. Acta Automatica Sinica,2011,37(12):1455-1463. [8] KUMAR V D A,KUMAR V D A,MALATHI S,et al. Facial recognition system for suspect identification using a surveillance camera[J]. Pattern Recognition and Image Analysis,2018,28(3):410-420. [9] TSENG Y T,KAWASHIMA S,KOBAYASHI S,et al. Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors[J]. Science of the Total Environment,2020,698:No. 134246. [10] SUN K,KANG H,PARK H H. Tagging and classifying facial images in cloud environments based on KNN using MapReduce[J]. Optik-International Journal for Light and Electron Optics, 2015,126(21):3227-3233. [11] TANG Y. Deep learning using linear support vector machines[EB/OL].[2019-04-10]. http://deeplearning.net/wp-content/uploads/2013/03/dlsvm.pdf. [12] SANDLER M,HOWARD A,ZHU M,et al. Inverted Residuals and linear bottlenecks:mobile networks for classification,detection and segmentation[EB/OL].[2019-06-22]. https://arxiv.org/pdf/1801.04381v1.pdf. [13] LI S,DENG W,DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2584-2593. [14] PRAMERDORFER C,KAMPEL M. Facial expression recognition using convolutional neural networks:state of the art[EB/OL].[2019-04-10]. https://arxiv.org/pdf/1612.02903.pdf. [15] 徐琳琳, 张树美, 赵俊莉. 构建并行卷积神经网络的表情识别算法[J]. 中国图象图形学报,2019,24(2):227-236. (XU L L, ZHANG S M,ZHAO J L. Expression recognition algorithm for parallel convolutional neural networks[J]. Journal of Image and Graphics,2019,24(2):227-236. [16] SZEGEDY C,IOFFE S,VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI,2017:4278-4284. [17] GUO Y, TAO D, YU J, et al. Deep neural networks with relativity learning for facial expression recognition[C]//Proceedings of the 2016 IEEE International Conference on Multimedia and Expo Workshops. Piscataway:IEEE,2016:1-6. [18] BERGSTRA J, COX D D. Hyperparameter optimization and boosting for classifying facial expressions:How good can a "Null" model be?[EB/OL].[2019-04-10]. https://arxiv.xilesou.top/pdf/1306.3476.pdf. [19] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1800-1807. [20] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2019-04-10]. https://arxiv.org/pdf/1704.04861.pdf. [21] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. |