[1] BISWAS R,TORA M R,BHUIYAN F H. LVQ and HOG based speed limit traffic signs detection and categorization[C]//Proceedings of the 2014 International Conference on Informatics, Electronics and Vision. Piscataway:IEEE,2014:1-6. [2] HOU Y,HAO X,CHEN H. A cognitively motivated method for classification of occluded traffic signs[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2016,47(2):255-262. [3] 张邯, 罗晓曙, 袁荣尚. 基于优化的卷积神经网络在交通标志识别中的应用[J]. 现代电子技术,2018,41(21):132-136. (ZHANG H,LUO X S,YUAN R S. Application of optimized convolutional neural network in traffic sign recognition[J]. Modern Electronics Technique,2018,41(21):132-136.) [4] 汪贵平, 盛广峰, 黄鹤, 等. 基于改进LeNet-5网络的交通标志识别方法[J]. 科学技术与工程,2018,18(34):78-84.(WANG G P,SHENG G F,HUANG H,et al. Traffic sign recognition method based on improved LeNet-5 network[J]. Science Technology and Engineering,2018,18(34):78-84.) [5] SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2017:3859-3869. [6] 洪瑞, 康旭东, 郭军, 等, 基于复杂网络描述的图像深度卷积分类方法[J]. 计算机应用,2018,38(12):3399-3402.(HONG R, KANG X D,GUO J,et al. Image deep convolution classification method based on complex network description[J]. Journal of Computer Applications,2018,38(12):3399-3402.) [7] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-07-20]. https://arxiv.org/pdf/1409.1556.pdf. [8] GLOROT X,BORDES A,BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. New York:JMLR. org,2011:315-323. [9] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251. (ZHOU F Y,JIN L P,DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229-1251.) [10] 曹荣川. 图像分类中基于显著关系的改进特征编码与池化算法研究[D]. 长春:吉林大学,2017:34-41. (CAO R C. Research on improved feature coding and pooling algorithm based on saliency relationship in image classification[D]. Changchun:Jilin University,2017:34-41.) [11] 付家慧, 吴晓富, 张索非. 基于仿射变换的胶囊网络特征研究[J]. 信号处理,2018,34(12):1508-1516. (FU J H,WU X F, ZHANG S F. Study on characteristics of capsule network based on affine transformation[J]. Journal of Signal Processing,2018,34(12):1508-1516.) [12] 胡聪, 屈瑾瑾, 许川佩, 等. 基于自适应池化的神经网络的服装图像识别[J]. 计算机应用,2018,38(8):2211-2217.(HU C, QU J J,XU C P,et al. Garment image recognition based on adaptive pooling neural network[J]. Journal of Computer Applications, 2018,38(8):2211-2217.) [13] KINGMA D P,BA J L. Adam:a method for stochastic optimization[EB/OL].[2019-07-20]. https://arxiv.org/pdf/1412.6980.pdf. |