1 |
Facebook. A library that provides an embeddable, persistent key-value store for fast storage[EB/OL]. [2019-03-30].. 10.1145/3483840
|
2 |
O’NEIL P, CHENG E, GAWLICK D, et al. The Log-Structured Merge-tree (LSM-tree)[J]. Acta Informatica, 1996, 33(4): 351-385. 10.1007/s002360050048
|
3 |
BRODER A, MITZENMACHER M. Network applications of Bloom filters: a survey[J]. Internet Mathematics, 2004, 1(4): 485-509. 10.1080/15427951.2004.10129096
|
4 |
DAYAN N, ATHANASSOULIS M, IDREOS S. Monkey: optimal navigable key-value store[C]// Proceedings of the 2017 ACM International Conference on Management of Data. New York: ACM, 2017: 79-94. 10.1145/3035918.3064054
|
5 |
DAYAN N, IDREOS S. Dostoevsky: better space-time trade-offs for LSM-tree based key-value stores via adaptive removal of superfluous merging[C]// Proceedings of the 2018 International Conference on Management of Data. New York: ACM, 2018: 505-520. 10.1145/3183713.3196927
|
6 |
SHVACHKO K, KUANG H, RADIA S, et al. The Hadoop distributed file system[C]// Proceedings of the IEEE 26th Symposium on Mass Storage Systems and Technologies. Piscataway: IEEE, 2010: 1-10. 10.1109/msst.2010.5496972
|
7 |
BUI D M, HUSSAIN S, HUH E N, et al. Adaptive replication management in HDFS based on supervised learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(6): 1369-1382. 10.1109/tkde.2016.2523510
|
8 |
PARETO. Pareto principle[EB/OL]. [2019-02-22].. 10.24108/preprints-3112193
|
9 |
骆克云.基于机器学习的RocksDB存储引擎配置优化[D].南京:南京大学,2019:16-21. 10.35745/ecei2019v2.035
|
|
LUO K Y. Configuration optimization of RocksDB storage engine based on machine learning[D]. Nanjing: Nanjing University, 2019: 16-21. 10.35745/ecei2019v2.035
|
10 |
Google. LevelDB is a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values[EB/OL]. [2019-03-30].. 10.4324/9781315877549-13
|
11 |
GEORGE L. HBase: The Definitive Guide: Random Access to Your Planet-Size Data[M]. Sebastopol, CA: O’Reilly Media, 2011.
|
12 |
GRUMMON J L, FRANKLIN C R. System and method for disk control with snapshot feature including read-write snapshot half: US 6341341[P]. 2002-01-22 [2019-01-12].
|
13 |
LIEDTKE J, HARTIG H, HOHMUTH M. OS-controlled cache predictability for real-time systems[C]// Proceedings of the 3rd IEEE Real-Time Technology and Applications Symposium. Piscataway: IEEE, 1997: 213-224. 10.1109/rttas.1997.601360
|
14 |
DONG S, CALLAGHAN M, GALANIS L, et al. Optimizing space amplification in RocksDB[EB/OL]. [2019-02-22].. 10.1016/j.disc.2007.09.028
|
15 |
秦秀磊,张文博,魏峻,等.云计算环境下分布式缓存技术的现状与挑战[J].软件学报,2013,24(1):50-66. 10.3724/SP.J.1001.2013.04276
|
|
QIN X L, ZHANG W B, WEI J, et al. Progress and challenges of distributed caching techniques in cloud computing[J]. Journal of Software, 2013 ,24(1):50-66. 10.3724/SP.J.1001.2013.04276
|
16 |
周志华.机器学习[M].北京:清华大学出版社,2016:108-109. 10.21436/inbom.12382432
|
|
ZHOU Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 108-109. 10.21436/inbom.12382432
|
17 |
LIVELY T, SCHROEDER L, MENDIZÁBAL C. Splaying log-structured merge-trees[C]// Proceedings of the 2018 International Conference on Management of Data. New York: ACM, 2018: 1839-1841. 10.1145/3183713.3183723
|
18 |
ROSS S M.应用随机过程:概率模型导论[M].龚光鲁,译.11版.北京:人民邮电出版社,2016:39-49.
|
|
ROSS S M. Introduction to Probability Models[M]. GONG G L, translated.11st ed. Beijing: Posts and Telecom Press, 2016: 39-49.
|
19 |
PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. 10.3389/fninf.2014.00014
|
20 |
VAROQUAUX G, GRISEL O. Joblib: running python function as pipeline jobs[EB/OL]. [2019-02-22]. .
|
21 |
GOUTTE C, GAUSSIER E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation[C]// Proceedings of the 2005 European Conference on Information Retrieval, LNCS3408. Berlin: Springer, 2005: 345-359.
|