[1] SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[EB/OL].[2019-08-04]. https://arxiv.org/pdf/1707.02968.pdf. [2] YANG Q,LIU Y,CHEN T,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology,2019,10(2):No. 12. [3] MCMAHAN H B,MOORE E,RAMAGE D,et al. Communicationefficient learning of deep networks from decentralized data[EB/OL]. (2017-02-28)[2019-12-02]. https://arxiv.org/pdf/1602.05629.pdf. [4] KIM H,PARK J,BENNIS M,et al. On-device federated learning via blockchain and its latency analysis[EB/OL].[2019-06-01]. https://arxiv.org/pdf/1808.03949v1.pdf. [5] LI S,CHENG Y,LIU Y,et al. Abnormal client behavior detection in federated learning[EB/OL].[2019-12-06]. https://arxiv.org/pdf/1910.09933.pdf. [6] ZHU L,LIU Z,HAN S. Deep leakage from gradients[EB/OL].[2019-12-19]. https://arxiv.org/pdf/1906.08935.pdf. [7] 章宁, 钟珊. 基于区块链的个人隐私保护机制[J]. 计算机应用, 2017,37(10):2787-2793.(ZHANG N,ZHONG S. Mechanism of personal privacy protection based on blockchain[J]. Journal of Computer Applications,2017,37(10):2787-2793.) [8] 拜亚萌, 满君丰, 张宏. 基于区块链的电子健康记录安全存储模型[J]. 计算机应用,2020,40(4):961-965.(BAI Y M,MAN J F,ZHANG H. Secure storage model of electronic health records based on blockchain[J]. Journal of Computer Applications,2020, 40(4):961-965.) [9] 李云飞, 柳青, 郝林, 等. 一种有效的RSA算法改进方案[J]. 计算机应用,2010,30(9):2393-2397.(LI Y F,LIU Q,HAO L,et al. Efficient variant of RSA cryptosystem[J]. Journal of Computer Applications,2010,30(9):2393-2397.) [10] 娄悦, 施荣华, 曹龄兮. 基于强认证技术的会话初始协议安全认证模型[J]. 计算机应用,2006,26(10):2332-2335.(LOU Y,SHI R H,CAO L X. SIP secure authentication model based on strong authentication technology[J]. Journal of Computer Applications,2006,26(10):2332-2335.) [11] 汪希仁, 孙战辉, 祝永霞. 一种新的封闭ECDSA签名阈下信道方案[J]. 计算机与网络,2013,39(6):71-73.(WANG X R, SUN Z H,ZHU Y X. A new subliminal-free protocol in ECDSA[J]. Computer and Network,2013,39(6):71-73.) [12] 胡彬轩. 基于联邦学习的空气质量监测系统设计与实现[D]. 北京:北京邮电大学,2019:30-40.(HU B X. Design and implementation of air quality monitoring system based on federal learning[D]. Beijing:Beijing University of Posts and Telecommunications,2019:30-40.) [13] GAO H,HUANG W,YANG X. Applying probabilistic model checking to path planning in an intelligent transportation system using mobility trajectories and their statistical data[J]. Intelligent Automation and Soft Computing,2019,25(3):547-559. [14] GAO H,HUANG W,DUAN Y,et al. Research on cost-driven services composition in an uncertain environment[J]. Journal of Internet Technology,2019,20(3):755-769. [15] PREUVENEERS D,RIMMER V,TSINGENOPOULOS I,et al. Chained anomaly detection models for federated learning:an intrusion detection case study[J]. Applied Sciences,2018,8(12):No. 2663. [16] BRISIMI T S,CHEN R,MELA T,et al. Federated learning of predictive models from federated electronic health records[J]. International Journal of Medical Informatics,2018,112:59-67. [17] ZHANG W,ZHANG Y,ZHAI J,et al. Multi-source data fusion using deep learning for smart refrigerators[J]. Computers in Industry,2018,95:15-21. [18] LEE J,SUN J,WANG F,et al. Privacy-preserving patient similarity learning in a federated environment:development and analysis[J]. JMIR Medical Informatics,2018,6(2):No. e20. [19] SHEN G,HAN X,ZHOU J,et al. Research on intelligent analysis and depth fusion of multi-source traffic data[J]. IEEE Access,2018,6:59329-59335. [20] LIU J,LI T,XIE P,et al. Urban big data fusion based on deep learning:an overview[J]. Information Fusion, 2020, 53:123-133. [21] ZHU Z,DONG S,YU C,et al. A text hybrid clustering algorithm based on HowNet semantics[J]. Key Engineering Materials, 2011,474/475/476:2071-2078. |