[1] 邹腾宽,汪钰颖,吴承荣. 网络背景流量的分类与识别研究综述[J]. 计算机应用, 2019, 39(3):802-811. (ZOU T K, WANG Y Y, WU C R. Review of network background traffic classification and identification[J]. Journal of Computer Applications, 2019, 39(3):802-811.) [2] NGUYEN T T T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. IEEE Communications Surveys and Tutorials, 2008, 10(4):56-76. [3] DAINOTTI A, PESCAPE A, CLAFFY K C. Issues and future directions in traffic classification[J]. IEEE Network, 2012, 26(1):35-40. [4] XUE Y B, WANG D W, ZHANG L. Traffic classification:issues and challenges[C]//Proceedings of the 2013 International Conference on Computing, Networking and Communications. Piscataway:IEEE, 2013:545-549. [5] 王勇,周慧怡,俸皓,等. 基于深度卷积神经网络的网络流量分类方法[J]. 通信学报, 2018, 39(1):14-23. (WANG Y, ZHOU H Y, FENG H, et al. Network traffic classification method basing on CNN[J]. Journal on Communications, 2018, 39(1):14-23.) [6] IBRAHIM H A H, ZUOBI O R A A, AL-NAMARI M A, et al. Internet traffic classification using machine learning approach:Datasets validation issues[C]//Proceedings of the 2016 Basic Sciences & Engineering Studies. Piscataway:IEEE, 2016:158-166. [7] MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[J]. ACM SIGMETRICS Performance Evaluation Review, 2005, 33(1):50-60. [8] AULD T, MOORE A W, GULL S F. Bayesian neural networks for internet traffic classification[J]. IEEE Transactions on Neural Networks, 2007, 18(1):223-239. [9] 徐鹏,林森. 基于C4.5决策树的流量分类方法[J]. 软件学报, 2009, 20(10):2692-2704. (XU P, LIN S. Internet traffic classification using C4.5 decision tree[J]. Journal of Software, 2009, 20(10):2692-2704.) [10] CHUNG J Y, PARK B, WON Y J, et al. An effective similarity metric for application traffic classification[C]//Proceedings of the 2010 IEEE Network Operations and Management Symposium. Piscataway:IEEE, 2010:286-292. [11] 杨哲,李领治,纪其进,等. 基于最短划分距离的网络流量决策树分类方法[J]. 通信学报, 2012, 33(3):90-102. (YANG Z, LI L Z, JI Q J, et al. Network traffic classification using decision tree based on minimum partition distance[J]. Journal on Communications, 2012, 33(3):90-102.) [12] 张震,汪斌强,陈鸿昶,等. 互联网中基于用户连接图的流量分类机制[J]. 电子与信息学报, 2013, 35(4):958-964. (ZHANG Z, WANG B Q, CHEN H C, et al. Internet traffic classification based on host connection graph[J]. Journal of Electronics and Information Technology, 2013, 35(4):958-964.) [13] 丁要军,蔡皖东.基于互信息选择聚类集成的网络流量分类方法[J].计算机应用, 2013, 33(1):80-82, 87. (DING Y J, CAI W D. Internet traffic classification method based on selective clustering ensemble of mutual information[J]. Journal of Computer Applications, 2013, 33(1):80-82, 87.) [14] PUNITHA V, MALA C. Traffic classification for connectionless services with incremental learning[J]. Computer Communications, 2019, 150:185-199. [15] SHAFIQ M, YU X, BASHIR A K, et al. A machine learning approach for feature selection traffic classification using security analysis[J]. The Journal of Supercomputing, 2018, 74(10):4867-4892. [16] ARIVUDAINAMBI D, VARUN VARUN K A, SIBI CHAKKARAVARTHY S, et al. Malware traffic classification using principal component analysis and artificial neural network for extreme surveillance[J]. Computer Communications, 2019, 147:50-57. [17] SHI H, LI H, ZHANG D, et al. An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification[J]. Computer Networks, 2018, 132:81-98. [18] VLĂDUŢU A, COMĂNECI D, DOBRE C. Internet traffic classification based on flows' statistical properties with machine learning[J]. International Journal of Network Management, 2017, 27(3):No.e1929. [19] DASH M, LIU H. Consistency-based search in feature selection[J]. Artificial Intelligence, 2003, 151(1/2):155-176. [20] ZHANG H, LU G, QASSRAWI M T, et al. Feature selection for optimizing traffic classification[J]. Computer Communications, 2012, 35(12):1457-1471. [21] 白东颖,易亚星,王庆超,等. 面向概念漂移问题的渐进多核学习方法[J]. 计算机应用, 2019, 39(9):2494-2498. (BAI D Y, YI Y X, WANG Q C, et al. Gradual multi-kernel learning method for concept drift[J]. Journal of Computer Applications, 2019, 39(9):2494-2498.) [22] BAENA-GARCÍA M, DEL CAMPO-ÁVILA J, FIDALGO R, et al. Early drift detection method[C/OL]//Proceedings of the 4th ECML PKDD International Workshop on Knowledge Discovery from Data Streams. 2006:77-86[2019-09-15]. https://www.cs.upc.edu/~abifet/EDDM.pdf. [23] WANG H, FAN W, PHILIP S Y, et al. Mining concept-drifting data streams using ensemble classifiers[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2003:226-235. |