1 |
AKAKIN H C, GURCAN M N. Content-based microscopic image retrieval system for multi-image queries[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 758-769. 10.1109/titb.2012.2185829
|
2 |
COMANICIU D, MEER P, FORAN D J. Image-guided decision support system for pathology[J]. Machine Vision and Applications, 1999, 11(4): 213-224. 10.1007/s001380050104
|
3 |
SCHNORRENBERG F, PATTICHIS C S, SCHIZAS C N, et al. Content-based retrieval of breast cancer biopsy slides[J]. Technology and Health Care, 2000, 8(5): 291-297. 10.3233/thc-2000-8505
|
4 |
SONG L, LIU X, MA L, et al. Using HOG-LBP features and MMP learning to recognize imaging signs of lung lesions[C]// Proceedings of the 25th IEEE International Symposium on Computer-Based Medical Systems. Piscataway: IEEE, 2012: 1-4. 10.1109/cbms.2012.6266313
|
5 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005:886-893. 10.1109/cvpr.2005.177
|
6 |
ZHI L, ZHANG S, ZHAO D, et al. Medical image retrieval using SIFT feature[C]// Proceedings of the 2nd International Congress on Image and Signal Processing. Piscataway: IEEE, 2009: 1-4. 10.1109/cisp.2009.5304112
|
7 |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 10.1023/b:visi.0000029664.99615.94
|
8 |
IBANEZ D P, LI J, SHEN Y, et al. Deep learning for pulmonary nodule CT image retrieval — an online assistance system for novice radiologists[C]// Proceedings of the 2017 IEEE International Conference on Data Mining Workshops. Piscataway: IEEE, 2017: 1112-1121. 10.1109/icdmw.2017.158
|
9 |
NISHIO M, SUGIYAMA O, YAKAMI M, et al. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning[J]. PloS ONE, 2018, 13(7): No.e0200721. 10.1371/journal.pone.0200721
|
10 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2019-03-10]. . 10.5244/c.28.6
|
11 |
ZHANG G, ZHU D, LIU X, et al. Multi-scale pulmonary nodule classification with deep feature fusion via residual network[J]. Journal of Ambient Intelligence and Humanized Computing, 2018:1-12. 10.1007/s12652-018-1132-5
|
12 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745
|
13 |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995. 10.1109/cvpr.2017.634
|
14 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90
|
15 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C/OL]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017. [2018-12-27]. .
|
16 |
Apache. Apache Spark[EB/OL]. [2019-01-10].. 10.1007/978-1-4842-4810-2_14
|
17 |
Apache. Apache Hadoop[EB/OL]. [2018-12-20].. 10.1007/978-1-4302-4864-4_20
|
18 |
Apache. Hadoop1.2.1 documentation HDFS architecture guide[EB/OL]. [2019-02-10].. 10.5753/wtf.2019.7717
|
19 |
KRIZHEVSKY A. Learning multiple layers of features from tiny images[R]. Toronto: University of Toronto, 2009.
|
20 |
CHEN X, FANG H, LIN T Y, et al. Microsoft COCO captions: data collection and evaluation server[EB/OL]. [2019-01-10]. .
|
21 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848
|
22 |
ARMATO III S G, MCLENNAN G, BIDAUT L, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931. 10.1118/1.3528204
|
23 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15: 1929-1958.
|
24 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the International Conference on International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456.
|