1 于坤杰,王昕,王振雷.基于反馈的精英教学优化算法[J].自动化学报,2014,40(9):1976-1983. YUK J, WANGX, WANGZ L. Elitist teaching-learning-based optimization algorithm based on feedback [J]. Acta Automatica Sinica, 2014,40(9):1976-1983. 2 BOUCHEKARAH R E H. Most valuable player algorithm: a novel optimization algorithm inspired from sport [J]. Operational Research, 2017, 80:1-57. 3 H R E-HBOUCHEKARA, ORLANDIA,AL-QDAHM, et al.Most valuable player algorithm for circular antenna arrays optimization to maximum sidelobe levels reduction [J]. IEEE Transactions on Electromagnetic Compatibility,2018,60(6): 1655-1661. 4 LIUX, LUOQ, WANGD , et al. An improved most valuable player algorithm with twice training mechanism [C]// Proceedings of the 2005 International Conference on Intelligent Computing, LNCS 10954. Cham: Springer, 2018: 854-865. 5 徐辰华,李成县,喻昕,等.基于Cat混沌与高斯变异的改进灰狼优化算法[J].计算机工程与应用,2017,53(4):1-9,50. XUC H, LIC X, YUX, et al. Improved grey wolf optimization algorithm based on chaotic Cat mapping and Gaussian mutation [J]. Computer Engineering and Applications, 2017, 53(4):1-9,50. 6 TIZHOOSHH. Opposition-based learning: a new scheme for machine intelligence [C]// Proceedings of the 2005 International Conference on Computational Intelligence for Modeling Control and Automation. Piscataway: IEEE, 2005: 695-701. 7 张斌,李延晖,郭昊.基于反向学习的跨种群差分进化算法[J].计算机应用,2017,37(4):1093-1099. ZHANGB, LIY H, GUOH. Cross-population differential evolution algorithm based on opposition-based learning [J]. Journal of Computer Applications. 2017, 37(4): 1093-1099. 8 王燕.反向粒子群算法理论及及其应用研究[D].西安:西安工程大学,2011:11-12. WANGY. The research of opposition-based particle swarm optimization and its application [D]. Xi’an: Xi’an Polytechnic University, 2011: 11-12. 9 王皓,欧阳海滨,高立群.一种改进的全局粒子群优化算法[J].控制与决策,2016,31(7):1161-1168. WANGH, OUYANGH B, GAOL Q. An improved global particle swarm optimization [J]. Control and Decision, 2016, 31(7): 1161-1168. 10 张建云,王银堂,贺瑞敏,等.中国城市洪涝问题及成因分析[J].水科学进展,2016,27(4):485-491. ZHANGJ Y, WANGY T, HER M, et al. Discussion on the urban flood and waterlogging and causes analysis in China [J]. Advances in Water Science, 2016, 27(4): 485-491. 11 熊立华,闫磊,李凌琪,等.变化环境对城市暴雨及排水系统影响研究进展[J].水科学进展,2017,28(6):930-942. XIONGL H, YANL, LIL Q, et al. Advances in analysis of impacts of changing environments on extreme urban rainfall and drainage infrastructure [J]. Advances in Water Science, 2017, 28(6): 930-942. 12 张子贤,孙光东,孙建印,等.城市暴雨强度公式拟合方法研究[J].水利学报,2013,44(11):1263-1271. ZHANGZ X, SUNG D, SUNJ Y, et al. Study on fitting methods for urban storm intensity formula [J]. Journal of Hydraulic Engineering, 2013,44(11): 1263-1271. 13 邹长武,熊建秋,李祚泳.改进的蚂蚁算法及其在暴雨强度公式参数优化中的应用[J].四川大学学报,2005,37(5):9-13. ZOUC W, XIONGJ Q, LIZ Y. Improved ant colony algorithm and its application to parameters optimization in storm intensity formula [J]. Journal of Sichuan University, 2005, 37(5): 9-13. 14 杨开,程晓如.暴雨强度公式中系数B统计算法一例[J].人民长江,1996,27(3):16-22. YANGK, CHENGX R. An example of coefficient B statistical algorithm in storm intensity formula [J]. Yangtze River, 1996, 27(3): 16-22. 15 王金叶.改进光学优化算法及其应用研究[D].上海:上海理工大学,2017:40-46. WANGJ Y. The study of optics optimization algorithm and its applications [D]. Shanghai: University of Shanghai for Science and Technology, 2017: 40-46. |